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PREFACE

A DBAFT of these lectures, written before they were delivered,

contained considerablymore technicahties andmathematics than

the present text. Facing a large audience in which physicists

and mathematicians were presumably a minority, I had to

change my plans and to improvise a simplified presentation.

Though this did not seem difficult on the platform of the Hall

of Magdalen College, Oxford, the final formulation for publi-

cation was not an easy task. I did not like replacing rigorous

mathematical reasoning by that mixture of literary style,

authority, and mystery which is often used by popularizing and

philosophizing scientists. Thus, the idea occurred to me to

preserve the mathematics by removing it to a detailed appendix

which could also contain references to the literature. The vast

extension of the latter, however, compelled me to restrict quota-

tions to recent publications which are not in the text-books.

Some of these supplements contain unpublished investigations

ofmy school, mainly by my collaborator Dr. H. S. Green. In the

text itself I have given up the original division into seven lec-

tures and replaced it by a more natural arrangement into ten

chapters.

I have to thank Dr. Green for his untiring help in reading,

criticizing, and correcting my script, working out drafts of the

appendix, and reading proofs. I am also indebted to Mr. Lewis

Elton not only for proof-reading but for carefully preparing the

index. I have further to thank Albert Einstein for permission

to publish sections of two of his letters.

My most sincere gratitude is due to the President and the

Fellows of Magdalen College who gave me the opportunity to

plan these lectures, and the leisure to write them down for

piJblication.

I wish to thank the Oxford University Press for the excellent

printing and their willingness to follow all my wishes.

M. B.
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NOTATION

The practice of representing vector quantities by means of clarendon

type in print is now well established, and used throughout these lectures.

For dealing with cartesian tensors, the notation of Chapman and Milne,

explained in the first chapter of Chapman and Cowling’s book The

Mathematical Theory of Non-Uniform Oases (C.U.P., 1939) is used; this

consists in printing tensors in sans serif type.

The following examples will suffice to show how vector and tensor

equations are translated into coordinate notation.

a ~ b a;^. = (A; = 1, 2, 3)

8

a.b =

a = (kfl = 1,2,3)

a.b = c ajabi = Cfc (A; - 1,2,3)

3

a . b . c = ^ aj^ bjgi Ci

aAb = c 0263—0362 = Cj, etc.

da
grado == b ^ = (grado)fc = 6,

dXk

^ A-— .a = diva
dx

3

(fc- 1,2,3)

^.a = diva = b =

^Aa = ciirla = b -* = (curla)i = bi, etc.
dx dXi dXf '

* ‘



I

INTRODUCTION
The notions of cause and chance which I propose to deal with

in these lectures are not specifically physical concepts but have

a much wider meaning and application. They are used, more or

less vaguely, in everyday Hfe. They appear, not only in aU

branches of science, but also in liistory, psychology, philosophy,

and theology; everywhere with a different shade of meaning.

It would be far beyond my abilities to give an account of all

these usages, or to attempt an anatysis of the exact significance

of the words ‘cause’ and ‘chance’ in each of them. However,

it is obvious that there must be a common feature in the use of

these notions, like the theme in a set of variations. Indeed,

cause expresses the idea of necessity in the relation of events,

while chance means just the opposite, complete randomness.

Nature, as well as human affairs, seems to be subject to both

necessity and accident. Yet even accident is not completely

arbitrary, for there are laws of chance, formulated in the mathe-

matical theory of probability, nor can the cause-effect relation

be used for predicting the future with certainty, as this would

require a complete knowledge of the relevant circumstances,

present, past, or both together, which is not available. There

seems to be a hopeless tangle of ideas. In fact, if you look

through the literature on this problem you will find no satisfac-

tory solution, no general agreement. Only in physics has a

systematic attempt been made to use the notions of cause and

chance in a free from contradictions. Physicists form their

notions through the interpretation of experiments. This method

may rightly be called Natural Philosophy, a word still used for

physics at the Scottish imiversifies. In this sense I shall attempt

to investigate the concepts of cause and chance in these lectures.

My material will be taken mainly from physics, but I shall try

to regard it with the attitude of the philosopher, and I hope that

the results obtained will be of use wherever the concepts of

cause and chance are applied. I know that such an attempt will

not find favour with some philosophers, who maintain that
6131 B



INTRODUCTION

science teaches only a narrow aspect ofthe world, and one which

is of no great importance to man’s mind. It is feme that many
scientists are not philosophically minded and have hitherto

shown much skill and ingenuity but little wisdom. I need hardly

to enlarge on this subject. The practical applications of science

have given us the means of a fuller and richer life, but also the

means of destruction and devastation on a vast scale. Wise

men would have considered the consequences of their activities

before starting on them
;
scientists have failed to do so, and only

recently have they become conscious of their responsibilities to

society. They have gained prestige as men of action, but they

have lost credit as philosophers. Yet history shows that science

has played a leading part in the development ofhuman thought.

It has not only supplied raw material to philosophy by gathering

facts, but also evolved the fundamental concepts on how to deal

with them. It sufl&ces to mention the Copernican system of the

universe, and the Newtonian dynamics which sprang from it.

These originated the conceptions of space, time, matter, force,

and motion for a long time to come, and had a mighty influence

on many philosophical systems. It has been said that the meta-

physics of any period is the offspring of the physics of the pre-

ceding period. If this is true, it puts us physicists under the

obligation to explain our ideas in a not-too-technical language.

This is the purpose of the following lectures on a restricted

though important fleld. I have made an attempt to avoid

mathematics entirely, but failed. It would have meant an un-

bearable clumsiness of expression and loss of clarity. A way out

would have been the reduction of all higher mathematics to

elementary methods in Euclidean style—^following the cele-

brated example of Newton’s Principia. But this would even

have increased the clumsiness and destroyed what there is of

aesthetic appeal. I personally think that more than 200 years

afterNewton there should be some progress in the assimilation of

mathematics by those who are interested in natural philosophy.

So I shall use ordinary language and formulae in a suitable

mixture; but I shall not give proofs of theorems (they are

collected in the Appendix).
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In this way I hope to explain how physics may throw some

light on a prot)lem which is not only important for abstract

knowledge but also for the behaviour of man. An unrestricted

belief in causality leads necessarily to the idea that the world is

an automaton of which we ourselves are only little cog-wheels.

This means materialistic determinism. It resembles very much
that religious determinism accepted by different creeds, where

the actions of men are believed to be determined from the

beginning by a ruling of God. I cannot enlarge on the difficulties

to which this idea leads if considered from the standpoint of

ethical responsibility. The notion of divine predestination

clashes with the notion of free will, in the same way as the

assumption of an endless chain of natural causes. On the other

hand, an unrestricted belief in chance is impossible, as it cannot

be denied that there are a great many regularities in the world

;

hence there can be, at most, "regulated accident’. One has to

postulate laws of chance which assume the appearance of laws

of nature or laws for human behaviour. Such a philosophy

would give ample space for free will, or even for the willed

actions of gods and demons. In fact, all primitive polytheistic

religions seem to be based on such a conception ofnature : things

happening in a haphazard way, except where some spirit inter-

feres with a purpose. We reject to-day this demonological

philosophy, but admit chance into the realm of exact science.

Our philosophy is dualistic in this respect
;
nature is ruled by

laws of cause and laws of chance in a certain mixture. How is

this possible? Are there no logical contradictions? Can this

mixture of ideas be cast into a consistent system in which all

phenomena can be adequately described or explained ? What
do we mean by such an explanation if the feature of chance is

involved ? What are the irreducible or metaphysical principles

inyolved ? Is there any room in this system for free will or for

the interference of deity ? These and many other questions can

be asked. I shaU try to answer some of them from the stand-

point of the physicist, others from my philosophical convictions

which are not much more than common sense improved by

Sporadic reading. The statement, frequently made, that modem
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physics has given up causahty is entirely unfounded. Modem
physics, it is true, has given up or modified many traditional

ideas
;
but it would cease to be a science if it had given up the

search for the causes of phenomena. I found it necessary,

therefore, to formulate the different aspects of the fundamental

notions by giving definitions ofterms which seem to me in agree-

ment with ordinary language. With the help of these concepts,

I shall survey the development of physical thought, dwelling

here and there on special points of interest, and I shall try to

apply the results to philosophy in general.



II

CAUSALITY AND DETERMINISM

The concept of causality is closely linked with that of determin-

ism, yet they seem to me not identical. Moreover, causality is

used with several different shades of meaning. I shall try to dis-

entangle these notions and eventually sum them up in definitions.

The cause-effect relation is used mainly in two ways ; I shall

illustrate this by giving examples, partly from ordinary life,

partly from science. Take these statements

:

‘Overpopulation is the cause of India's poverty.'

‘The stability of British politics is caused by the institution

of monarchy.’

‘Wars are caused by the economic conditions.’

‘There is no life on the moon because of the lack of an

atmosphere containing oxygen.’

‘ Chemical reactions are caused by the affinity of molecules.’

The common feature to which I wish to draw your attention

is the fact that these sentences state timeless relations. They
say that one thing or one situation A causes another J5, meaning

apparently that the existence of B depends on A, or that if A
were changed or absent, B would also be changed or absent.

Compare these statements with the following

:

‘The Indian famine of 1946 was caused by a bad harvest.’

‘The fall of Hitler was caused by the defeat of his armies.’

‘The American war of secession was caused by the economic

situation o*f the slave states.’

‘Life could develop on earth because ofthe formation of an

atmosphere containing oxygen.’

‘The destruction of Hiroshima was caused by the explosion

of an atomic bomb.’

In these sentences one definite event A is regarded as the

cause of another B
;
both events are more or less fixed in space

and time. I think that these two different shades of the cause-

effect relation are both perfectly legitimate. The common factor



6 CAUSALITY AND DETERMINISM

is the idea of dependence, which needs some ^omment. This

concept of dependence is clear enough if the two things con-

nected are concepts themselves, things of the mind, like two

numbers or two sets of numbers ;
then dependence means what

the mathematician ex:presses by the word ‘function’. This

logical dependence needs no further analysis (I even think it

cannot be further analysed). But causality does not refer to

logical dependence ;
it means dependence of real things ofnature

on one another. The problem of what this means is not simple

at all. Astrologers claim the dependence of the fate of human
beings on the constellations of stars. Scientists reject such state-

ments—but why? Because science accepts only relations of

dependence if they can be verified by observation and experi-

ment, and we are convinced that astrology has not stood this

test. Science insists on a criterion for dependence, namely

repetitive observation or experiment : either the things A and B
refer to phenomena, occurring repeatedly in Nature and being

sufficiently similar for the aspect in question to be considered

as identical; or repetition can be artificially produced by

experiment.

Observation and experiment are crafts which are systemati-

cally taught. Sometimes, by a genius, they are raised to the

level of an art. There are rules to be observed: isolation of the

system considered, restriction of the variable factors, varying

of the conditions until the dependence of the effect on a single

factor becomes evident
;
in many cases exact measurements and

comparison of figures are essential. The technique of handling

these figures is a craft in itself, in which the notions of chance

and probability play a decisive part—^we shall return to this

question at a later stage. So it looks as if science has a methodical

way of finding causal relations without referring to any meta-

physical principle. But this is a deception. For no observation

or experiment, however extended, can give more than a finite

number ofrepetitions, and the statement ofa law—

B

depends on

A—always transcends experience. Yet this kind of state-

ment is made everywhere and all the time, and sometimes from

scanty material. Philosophers call it Inference by Induction,
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and have developed many a profound theory of it. I shall not

enter into a discussion of these speculations. But I have to

make it clear why I distinguish this principle of induction from

causality. Induction allows onetogeneralize anumber ofobserva-

tions into a general rule : that night follows day and day follows

night, or that in spring the trees grow green leaves, are induc-

tions, but they contain no causal relation, no statement of

dependence. The method of inductive thinking is more general

than causal thinking
;
it is used in everyday life as a matter of

course, and it applies in science to the descriptive and experi-

mental branches as well. But while everyday life has no definite

criterion for the validity of an induction and relies more or less

on intuition, science has worked out a code, or rule of craft, for

its application. This code has been entirely successful, and I

think that is the only justification for it—just as the rules of the

craft of classical music are only justified by full audiences and

applause. Science and art are not so different as they appear.

The laws in the realms of truth and beauty are laid down by the

masters, who create eternal works.

Absolute values are ideals never reached. Yet I think that

the common effort of mankind has approached some ideals in

quite a respectable way. I do not hesitate to call a man foolish

if he rejects the teaching of experience because no logical proof

is forthcoming, or because he does not know or does not accept

the rules of the scientific craft. You find such super-logical

people sporadically among pure mathematicians, theologians,

and philosophers, while there are besides vast communities of

people ignoijant of or rejecting the rules of science, among them

the members of anti-vaccination societies and believers in

astrology. It is useless to argue with them
;
I cannot compel

them to accept the same criteria of valid induction in which I

believe: the code of scientific rules. For there is no logical

argument for doing so
;
it is a question of faith. In this sense I

am willing to call induction a metaphysical principle, namely

something beyond physics.

After this excursion, let us return to causality and its two

ways of application, one as a timeless relation of dependence,
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the other as a dependence of one event fixed in time and space

on another (see Appendix, 1 ). I think that the abstract, timeless

meaning of causahty is the fundamental one. This becomes

quite evident if one tries to use the term in connexion with a

specific case without implicit reference to the abstraction. For

example : The statement that a bad harvest was the cause of the

Indian famine makes sense only if one has in mind the timeless

statement that bad harvests are causes of famines in general.

I leave it to you to confirm this with the other examples I have

given or with any more you may invent. If you drop this refer-

ence to a general rule, the connexion between two consecutive

events loses its character of causality, though it may still retain

the feature of perfect regularity, as in the sequence of day and

night. Another example is the time-table of a railway line. You
can predict with its help the arrival at King’s Cross of the

10 o’clock from Waverley
;
but you can hardly say that the time-

table reveals a cause for this event. In other words, the law

of the time-table is deterministic : You can predict future events

from it, but the question 'why ?’ makes no sense.

Therefore, I think one should not identify causality and

determinism. The latter refers to rules which allow one to

predict from the knowledge of an event A the occurrence of an

event B (and vice versa), but without the idea that there is a

physical timeless (and spaceless) link between all things of the

kind A and all things of the kind J5. I prefer to use the ex-

pression 'causahty’ mainly for this timeless dependence. It is

exactly what experimentalists and observers mean when they

trace a certain phenomenon to a certain cause by systematic

variation of conditions. The other application of the word to

two events following one another is, however, in so common use

that it cannot be excluded. Therefore I suggest that it should be

used also, but supplemented by some 'attributes’ concerning

time and space. It is always assumed that the cause precedes the

effect ; Iproposeto call this the principle ofantecedence. Further,

it is generally regarded as repugnant to assume a thing to cause an

effect at a place where it is not present, or to which it cannot be

linkedby other things
;
I shall call this the principle of contiguity.
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I shall now try to condense these considerations in a few

definitions.
*

Determinism postulates that events at different times are

connected by laws in such a way that predictions of un-

known situations (past or future) can be made.

By this formulation religious predestination is excluded, since

it assumes that the book of destiny is only open to God.

Causality postulates that there are laws by which the occur-

rence of an entity B of a certain class depends on the

occurrence of an entity A of another class, where the word

'entity ’ means any physical object, phenomenon, situation,

or event. A is called the cause, B the effect.

If causality refers to single events, the following attributes

of causality must be considered

:

Antecedence postulates that the cause must be prior to, or at

least simultaneous with, the effect.

Contiguity postulates that cause and effect must be in spatial

contact or connected by a chain of intermediate things in

contact.



Ill

ILLUSTRATION: ASTRONOMY AND PARTICLE
MECHANICS

I SHALL now illustrate these definitions by surveying the

development of physical science. But do not expect an ordinary

historical treatment. I shall not describe how a great man
actually made his discoveries, nor do I much care what he him-

self said about it. I shall try to analyse the scientific situation

at the time of the discovery, judged by a modern mind, and

describe them in terms of the definitions given.

Let us begin with the oldest science, astronomy. Pre-

Newtonian theory of celestial motions is an excellent example

of a mathematical and deterministic, yet not causal, description.

This holds for the Ptolemaic system as well as for the Copernican,

including Kepler’s refinements. Ptolemy represented the motion

of the planets by kinematic models, cycles, and epicycles rolling

on one another and on the fixed heavenly sphere. Copernicus

changed the standpoint and made the sun the centre of cyclic

planetary motion, while Kepler replaced the cycles by ellipses.

I do not wish to minimize the greatness of Copernicus’ step in

regard to the conception of the Universe. I just consider it from

the standpoint of the question which we are discussing. Neither

Ptolemy nor Copernicus nor Kepler states a cause for the be-

haviour of the planets, except the ultimate cause, the will of the

Creator. What they do is, in modern mathematical language,

the establishment of functions,

for the coordinates of all particles, depending on time. Coperni-

cus himself claimed rightly that his functions, ormore accurately

the corresponding geometrical structures, are very much simpler

than those of Ptolemy, but he refrained from advocating the

cosmological consequences of his system. This question came

to the foreground long after his death mainly by Galileo’s tele-

scopic observations, which revealed in Jupiter and his satellites

a repetition of the Copernican system on a smaller scale.
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Descartes’s cosmology can be regarded as an early attempt to

estabHsh causal laws for the planetary orbits by assuming a

complicated vortex motion of some kind of ether, and it is

remarkable that this construction satisfies contiguity. But it

failed because it lacked the main feature of scientific progress

;

it was not based on a reasonable induction from facts. Ofcourse,

no code of rules existed, nor did Descartes’s writings provide it

at that time. The principles of the code accepted to-day are

implicitly contained in the works of Galileo and Newton, who
demonstrated them with their actual discoveries in physics and

astronomy—^in the same way as Haydn established the rules of

the sonata by writing lovely music in this form.

Galileo’s work precedes Newton’s not only in time but also

in logical order
;
for Galileo was experimenting with terrestrial

objects according to the rules of repetition and variation of con-

ditions, while Newton’s astronomical material was purely obser-

vational and restricted. Galileo observed how a falling body

moves, and studied the conditions on which the motion depends.

His results can be condensed into the well-known formula for the

vertical coordinate of a small body or ‘particle’ as a function of

Z = -W> (3.1)

where gr is a constant, i.e. independent not only of time but also

of the falling body. The only thing this quantity g can depend

upon is the body towards which the motion is taking place, the

earth—a conclusion which is almost too obvious to be formu-

lated
; for if the motion is checked by my hand, I feel the weight

as a pressure directed downwards towards the earth. Hence the

constant g nlust be interpreted as a property of the earth, not of

the falling body.

Using Newton’s calculus (denoting the time derivative by a

dot) and generahzing for all three coordinates, one obtains the

equations ^ = 0, y = 0, z= -g, (3.2)

which describe the trajectories of particles upon the earth with

arbitrary initial positions and velocities.

These formulae condense the description ofan infinite number

of orbits and motions in one single simple statement: that some
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property of the motion is the same for the whole class, indepen-

dent of the individual case, therefore depending only on the one

other thing involved, namely the earth. Hence this property,

namely the vertical acceleration, must be ‘due to the earth’, or

‘caused by the earth’, or ‘a force exerted by the earth’.

This word ‘force’ indicates a specification of the general

notion of cause, namely a measurable cause, expressible in

figures. Apart from this refinement, Galileo’s work is just a case

of ordinary causality in the sense of my definition.

Yet the law (3.2) involves time, since the ‘effect’ of the force

is an acceleration, the rate of change of velocity in time. This

is the actual result of observation and measurement, and has no

metaphysical root whatsoever. A consequence of this fact is the

deterministic character of the law (3.2) : if the position and the

velocity of a particle are given at any time, the equations deter-

mine its position and velocity at any other time.

In fact, any other time in the past or future. This shows that

Galileo’s law does not conform to the postulate of antecedence

:

a given initial situation cannot be regarded as the cause of a

later situation, because the relation between them is completely

symmetrical; each determines the other. This is closely con-

nected with the notion of time which Galileo used, and which

Newton took care to define explicitly.

The postulate of contiguity is also violated by Galileo’s law

since the action of the earth on the moving particle needs

apparently no contact. But this question is better discussed in

connexion with Newton’s generalization.

Newton applied Galileo’s method to the explanation of celestial

motions. The material on which he based his deductions was

scanty indeed; for at that time only six planets (including the

earth) and a few satellites of these were known. I say ‘deduc-

tions’, for the essential induction had already been made by

Kepler when he announced his three laws of planetary motion as

valid for planets in general. The first two laws, concerning the

elliptic shape of the orbit and the increase of the area swept by
the radius vector, were based mainly on Tycho Brahe’s observa-

tions of Mars, i.e, of one single planet. Generalized by a sweeping
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induction to any planet they are, according to Newton, equiva-

lent to the statement that the acceleration is always directed

towards the sun and varies inversely as the square ofthe distance

r from the sun, where ft is a constant which may differ

from planet to planet. But it is the third law which reveals the

causal relation to the sun. It says that the ratio of the square

of the period and the cube of the principal axis is the same for

all planets—induced from data about the six known planets.

This implies, as Newton showed (see Appendix, 2), that the

constant fc is the same for all planets. Hence as in Galileo’s case,

it can depend only on the single other body involved, the sun.

In this way the interpretation is obtained that the centripetal,

acceleration is 'due to the sun’, or 'caused by the sun’, or-

'a force exerted by the sun’.
^

The moon and the other planetary satellites were then the

material for the induction which led to the generalization of a

mutual attraction of all bodies towards one another. The most

amazing step, rightly admired by Newton’s contemporaries and

later generations, was the inclusion of terrestrial bodies in the

law derived from the heavens. This is in fact the idea symbolized

by the apocryphal story of the falling apple : terrestrial gravity

was regarded by Newton as identical with celestial attraction.
^

By applying his laws of motion to the system earth-moon, he

could calculate Galileo’s constant of gravity g from geodetical

and astronomical data : namely,

47r2i?3
(3.3)

\

where r is the*radius of the earth, R the distance between thei

centres of earth and moon, and T the time of revolution ofj

the moon (sidereal month).
‘

The general equations for the motion of n particles under

mutual gravitation read in modern vector notation

= —grad„ V, (3.4)

(3.6)
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where is the position vector of the particle a (a = 1,

the distance of two particles a and jS, V the

potential of the gravitational forces.

Newton also succeeded in generalizing the laws of motion for

other non-gravitational forces by introducing the notion ofmass,

or more precisely of inertial mass. Newton’s method of repre-

senting his results in an axiomatic form does not reveal the way
he obtained them. It is, however, possible to regard this step as

a case of ordinary causality derived by induction. One has to

observe the acceleration of different particles produced by the

same non-gravitational (say elastic) forces at the same point of

space
;
they are found to differ, but not in direction, only in

magnitude. Therefore, one can infer by induction the existence

of a scalar factor characteristic for the resistance of a particle

against acceleration or its inertia. This factor is called ‘mass’.,

It may still depend on velocity as is assumed in modern theory

of relativity. This can be checked by experiment, and as in

Newton’s time no such effect could be observed, the mass was

regarded as a constant.

Then the generalized equations of motions read

= (3.6)

where (a = 1, 2,...,n) are the masses and the force vectors

which depend on the mutual distances of all the particles.

As in the case of gravitation, they may be derivable from a

potential V by the operation

F,= ^grad,F, (3.7)

where F is a function of the The most general form of F for

forces inverse to the square of the distance would be
(
2' means
<x,fi

summing over all a, p except oc = p)

F = V' (3.8)

where are constants; comparison with (3.4) and (3.6) shows,

however, that these must have the form

(3.9)
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Newton applies further a law of symmetry, stated axiomatic-

ally, namely that action equals reaction, or from

which foUows
fip = Kmp, (3.10)

where JT is a universal constant, the constant of gravitation.

Hence the constants of attraction or gravitational masses fjL^

are proportional to the inertial masses

Neither Newton himself, nor many generations of physicists

and astronomers after him have paid much attention to the law

expressed by (3.10). Astronomical observations left little doubt

that it was correct, and it was proved by terrestrial observations

(with suitable pendulums) to hold with extreme accuracy

(Eotvos and others). Two centuries went by before Einstein saw

the fundamental problem contained in the simple equation

(3.10), and built on it the colossal structure of his theory of

general relativity, to which we have to return later.

But this is not our concern here. We have to examine

Newton’s equations from the standpoint of the principle of

causality. I hope I have made it clear that they imply the notion

of cause exactly in the same sense as it is always used by the

experimentalist, namely signifying a verifiable dependence of

one thing or another. Yet this one thing is, in Galileo’s and

Newton’s theory alike, a peculiar quantity, namely an accelera-

tion. The peculiarity is not only that it cannot be seen or read

from a measuring tape, but that it contains the time implicitly.

In fact, Newton’s equations determine the motion of a system

in time completely for any given initial state (position and

velocity of all particles involved). In this way, ‘ causation ’ leads

to ‘ determination ’, not as a new metaphysical principle, but as a

physical fact, Hke any other. However, just as in Galileo’s

simpler case, so here the relation between two consecutive con-

figurations of the system is mutual and symmetrical. This has a

bearing on the question whether the principle of antecedence

holds. As this applies, according to our definition, only to the

cause-effect relation between single events, one has to change

the standpoint. Instead of considering the acceleration of one

body to be caused by the other bodies, one considers two
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consecutive configurations ofthe whole system and asks whether

it makes sense to call the earlier one the cause" of the later one.

But it makes no sense, for the relation between the two states is

symmetrical. One could, with the same right, call the later

configuration the cause of the earlier one.

The root of this symmetry is Newton’s definition of time.

Whatever he says about the notion of time (in Princi'pia,

Scholium I) as a uniform flow, the use he makes of it contains

nothing of a flow in one direction. Newton’s time is just an

independent variable t appearing in the ecpiations of motion, in

such a way that if t is changed into —t, the equations remain

the same. It follows that, if all velocities are reversed, the

system just goes back the same way
;
it is completely reversible.

Newton’s time variable t is obviously an idealization abstracted

from simple mechanical models and astronomical observations,

fitting well into celestial motion, but not into ordinary experi-

ence. To us it appears that life on earth is going definitely in one

direction, from past to future, from birth to death, and the

perception of time in our mind is that of an irresistible and

irreversible current.

Another feature of Newton’s dynamics was repugnant to

many of his contemporaries, in particular the followers of

Descartes, whose cosmology, whatever else its shortcomings,

satisfied the principle ofcontiguity, as I have called the condition

that cause and effect should be in spatial contact. Newton’s

forces, the quantitative expressions for causes of motion, are sup-

posed to act through empty space, so that cause and effect are

simultaneous whatever the distance. Newton himself refrained

from entering into a metaphysical controversy and insisted that

the facts led unambiguously to his results. Indeed, the language

of facts was so strong that they silenced the philosophical objec-

tions, and only when new facts revealed to a later generation the

propagation of forces with finite velocity, was the problem of

contiguity in gravitation taken up. In spite of these difficulties,

Newton’s dynamics has served many generations of physicists

and is useful, even indispensable, to-day.



IV

CONTIGUITY

MECHANICS OF CONTINUOUS MEDIA

Although I maintain that neither causality itself nor its

attributes, which I called the principles of antecedence and

contiguity, are metaphysical, and that only the inference by

induction transcends experience, there is no doubt that these

ideas have a strong power over the human mind, and we have

evidence enough that they have influenced the development of

classical physics. Much effort has been made to reconcile

Newton’s laws with these postulates. Contiguity is closely bound

up with the introduction of contact forces, pressures, tensions,

first in ordinary material bodies, then in the electromagnetic

ether, and thus to the idea of fields of forces
;
but the systematic

application of contiguity to gravitation exploded Newton’s

theory, which was superseded by Einstein’s relativity. Similar

was the fate of the postulate of antecedence
;
it is closely bound

up with irreversibility in time, and found its first quantitative

formulation in thermodynamics. The reconciliation of it with

Newton’s laws was attempted by atomistics and physical

statistics
; the idea being that accumulations of immense num-

bers of invisible Newtonian particles, atoms, or molecules appear

to the observer to have the feature of irreversibility for statistical

reasons. The atoms were first hypothetical, but soon they were

taken seriously, and one began to search for them, with increas-

ing success. They became more and more real, and finally even

visible. And fhen it turned out that they were no Newtonian

particles at all. Whereupon the whole classical physics exploded,

to be replaced by quantum theory. Looked at from the point

of view of our principles, the situation in quantum theory is

reversed. Determinism (which is so prominent a characteristic

of Newton’s theory) is abandoned, but contiguity and ante-

cedence (violated by Newton’s laws) are preserved to a consider-

able degree. Causality, which in my formulation is independent

of antecedence and contiguity, is not affected by these changes

:
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scientific work will always be the search for causal interdepen-

dence of phenomena.

After this summary ofthe following discussion, let us return to

the questionwhyviolationofthe principlesofcontiguityand ante -

cedence in Newton’s theory was firstaccepted—though not with-

out protest—but later amended and finally rejected. This change

was due to the transition from celestial to terrestrial mechanics.

The success of Newton’s theory was mainly in the field of

planetary motion, and there it was overwhelming indeed. It is

not my purpose to expand on the history of astronomy after

Newton ; it sufiices to remember that the power of analytical

mechanics to describe and predict accurately the observations

led many to the conviction that it was the final formulation of

the ultimate laws of nature.

The main attention was paid to the mathematical investiga-

tion of the equations of motion, and the works of Lagrange,

Laplace, Gauss, Hamilton, and many others are a lasting

memorial of this epoch. Of all these writings, I shall dwell only

for a moment on that of Hamilton, because his formulation of

Newton’s laws is the most general and elegant one, and because

they will be used over and over again in the following lectures.

So permit me a short mathematical interlude which has nothing

directly to do with cause and chance.

Hamilton considers a system of particles described by any

(in general non-Cartesian) coordinates then the poten-

tial energy is a function of these, F(ji, q^,,.,) or shortly V{q)y and

the kinetic energy T a function of both the coordinates and the

generalized velocities q^,—, T(q, q). He then defines general-

ized momenta
^jr= (4-1)

and regards the total energy 7+ F as a function of the and

This function T+V = H(q,p) (4.2)

is to-day called the Hamiltonian.

The equations of motion assume the simple ‘canonical’ form

- dH
(4.3)
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from which one reads at once the conservation law of energy,
* JTT

H = const. (4.4)
at

It is this set of formulae which has survived the most violent

revolution of physical ideas which has ever taken place, the

transition to quantum mechanics.

Returning now to the post-Newtonian period there was,

simultaneous with the astronomical applications and confirma-

tions of the theory, a lively interest in applying it to ordinary

terrestrial physics. Even here Newton had shown the way and

had calculated, for instance, the velocity of sound in a fluid.

Eventually the mechanics of elastic solids brought about a

modification of Newton’s definition of force which satisfies con-

tiguity. Much of this work is due to the great mathematician

Cauchy. He started, as many before him, by treating a solid as

an aggregate of tiny particles, acting on one another with

Newdionian non-contiguous forces of short range—anticipating

to some degree the modem atomistic standpoint. But there was

of course, at that time, no evidence of the physical reality of

these particles. In the physical applications all traces of them

were obliterated by averaging. The form of these results sug-

gested to Cauchy another method of approach where particle

mechanics is completely discarded. Matter is considered to be a

real continuum in the mathematical sense, so that it has a

meaning to speak of a force between two pieces of matter

separated by a surface. This seems to be, from our modern

standpoint, a step in the wrong direction, as we know matter

to be discontinuous. But Cauchy’s work showed how con-

tiguity could be introduced into mechanics ;
the importance of

this point became evident when the new method was applied to

the ether, the carrier of light and of electric and magnetic forces,

which even to-day is still regarded as continuous—^though it has

lost most of the characteristic properties of a substance and can

hardly be called a continuous medium.

In this theory all laws appear in the form of partial differential

equations, in which the three space-coordinates appear together

wdth the time as independent coordinates.
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I shall give a short sketch of the mechanics of continuous

media.

Mass, velocity, and all other properties of matter are con-

sidered continuously distributed in space. The mass per unit

volume or density p is then a function of the space coordinates,

and the same holds for the current of mass u = pv (namely the

quantity of mass passing through a surface per unit area and

unit time). The conservation (indestructibility) of mass then

leads to the so-called continuity equation (see Appendix, 3)

p-f-div u “ 0. (4.5)

Concerning the forces, one has to assume that, if the sub-

stance is regarded as separated into two parts by a surface, each

part exerts a push or pull through this surface on the otherwhich,

measured per unit area, is called tension or stress. A simple

mathematical consideration, based on the equilibrium conditions

for the resultant forces acting on the surfaces of a volume

element, shows that it suffices to define these tension forces for

three non-coplanar surface elements, say those parallel to the

three coordinate planes; the force on the element normal to x

being Tp with components the other two forces

correspondingly% {Ty^, Tyy, Ty^) and % (T^^, T^y, TJ. Then the

force on a surface element with the normal unit vector

n {n^yTiy.n^)

is given by = %n^+ryny+T,n,, (4.6)

Application of the law of moments to a small volume element

shows (see Appendix, 3) that

T T T = T T=T (4:7)

Hence the quantities T form a symmetrical matrix, the stress

tensor
Ta

\T,.^ 21
,

xy

*-yx yy (4.8)

V2l, 2Lzy

Newton’s law applied to a volume element then leads to the

equations

dt
p'^ = dirJ, (4.9)
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where div T is a vector with the components

8T 8T 8T
/div T) —

I 1

^ 8x ' 8x ' dx
’ (4.10)

and d/dt the operator

d 8
,

8
,

8
,

8
(4.11)

which is called the ‘convective derivative'.

(4.9) together with (4.5) are the new equations of motion

which satisfy the postulate of contiguity. They are the proto-

type for aU subsequent field theories. In the present form they

are still incomplete and rather void of meaning, as the stress

tensor is not specified in its dependence on the physical condi-

tions ofthe system—^just in the same way as Newton's equations

are void of meaning if the forces are not specified with their

dependence on the configuration of the particles. The configura-

tion of a continuous system cannot be described by the values

of a finite number of variables, but by certain space functions,

called ‘strain-components'. They are defined in this way:

A small (infinitesimal) volume of initially spherical shape will be

transformed by the deformation into an ellipsoid
;
the equation

of this has the form

= €, (4.12)

where e is an (infinitesimal) constant, measuring the absolute

dimensions, and 611 , 622, ...,612 are six quantities depending on

the position x, y, z of the centre of the sphere. These are the

components of the strain tensor e.

In the thegry of elasticity it is assumed that the stress com-

ponents are linear functions of the strain components

(Hooke’s law).

In hydrodynamics the relation between T and e involves

space- and time-derivatives of In plastic soMds the situation

is still more complicated.

We need not enter into these different branches of the

mechanics in continuous media. The only important point for

us is this : Contact forces spread not instantaneously but with

finite velocity. This is the main feature distinguishing Cauchy’s^
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contiguous mechanics from Newton’s non-contiguous. The
simplest example is an elastic fluid (liquid or gas). Here the

stress tensor T has only diagonal elements which are equal and

represent the pressure jp. The configuration can also be described

by one variable, the density p or, for a given mass, the volume V.

The relation between^ andF may be any function^ ==/(F)—^we

shall have to remember this later when we have to deal with

thermodynamics. For small disturbances of equilibrium the

general equations reduce to linear ones
;
any quantity (/> in an

isotropic fluid (change of volume or pressure) satisfies the linear

wave equation

c2
= A^, (4.13)

where A is Laplace’s difierential operator

P2 ^2 02
A-diTgiad = ^+-+^, (4.14)

and c a constant which is easily found to mean the phase

velocity of a plane harmonic wave

<f}
== A sin-^ (z—ct).

A

The equation (4.13) links up mechanics with other branches

of physics which have independently developed, optics and

electromagnetism.

ELECTROMAGNETIC FIELDS

The history of optics, in particular Newton’s contributions

and his dispute with Huygens about the corpuscular or wave
nature of light, is so well known that I need not speak about it.

A hundred years after Newton, the wave nature of light was

established by Young and Fresnel with the help of experiments

on diffraction and interference. Wave equations of the type

(4.13) were used as a matter of course to describe the observa-

tions, where now
<f>
means the amplitude of the vibration.

But what is it that vibrates ? A name, ‘ether,’ was ready to

hand, and its ability to propagate transverse waves suggested

that it was comparable to an elastic soHd. In this way it came

to pass that the ether-filled vacuum was the carrier of contact
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forces, spreading with finite v^ocity. They existed for a long

period peacefully beside Newton’s instantaneous forces of

gravitation, and other similar forces introduced to describe

elementary experiences in electricity and magnetism. These

forces are usually connected with Coulomb’s name, who verified

them by direct measurements of the intensity of attraction and

repulsion between small charged bodies, and between the

poles of needle-shaped magnets. He found a law of the same

type as that of Newton, of the form where the constant

depends on the state of electrification or magnetization respec-

tively of the interacting particles; by applying the law of

action and reaction fjL can be spht into factors, /x = Cg in the

electric case, where eg are called the charges. It must,

however, have been remarked that this law was already

established earlier and with a higher degree of accuracy by

Cavendish and Priestley by an indirect reasoning, with the help

of the fact that a closed conductor screens a charged particle

from the influence of outside charges; this argument, though stiU

dressed up in the language of Newtonian forces, is already quite

close to notions of field theory.

It was the attempt to formulate the mechanical interactions
|

between linear currents (in thin wires) in terms of Newtonian
f

forces which entangled physics in the first part ofthe nineteenth
;

century in serious difficulties. Meanwhile Faraday had begun /

his investigations unbiased by any mathematical theory, and

accumulated direct evidence for imderstanding electric and

magnetic phenomena with the help of contact forces. He spoke

about pressures and tensions in the media surrounding charged

bodies, using the expressions introduced in the theory of elas-

ticity, yet with considerable and somewhat strange modifica-

tions. Indeed, the strangeness of these assumptions made it

difficult for his learned contemporaries to accept his ideas and

to discard the well-established Newtonian fashion of descrip-

tion. Yet seen from our modern standpoint, there is no intrinsic

difference between the two methods, as long as only static and

stationary phenomena are considered. Mathematical analysis

shows that the resultant forces on observable bodies can be
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expressed either as integrals over elementary contributions of

the Newtonian—or better Coulombian—^type acting over the

distance, or by surface integrals of tensions derived from field

equations. This holds not only for conductors in vacuo, but also

for dielectric and magnetizable substances
;
it is true that in the

latter case the Coulombian forces lead to integral equations

which are somewhat involved, but the differential equations of

the field are, in spite of their simpler aspect, not intrinsically

simpler. This is often overlooked in modern text“books. How-
ever, in Faraday’s time this equivalence of differential and

integral equations for the forces was not known, and if it had

been, Faraday would not have cared. His conviction of the

superiority of contact forces over Coulombian forces rested on

his physical intuition. It needed another, more mathematically-

minded genius, Clerk Maxwell, to find the clue which made it

impossible to accept forces acting instantaneously over finite

distances: the finite velocity of propagation. It is not easy to

analyse exactly the epistemological and experimental founda-

tions of Maxwell’s prediction, as his first papers make use of

rather weird models and the purity of his thought appears only

in his later publications. I think the process which led to Max-

well’s equations, stripped of all unnecessary verbiage and round-

about ways, was this : By combining all the known experimental

facts about charges, magnetic poles, currents, and the forces

between them, he could establish a set of field equations con-

necting the spatial and temporal changes of the electric and

magnetic field strength (force per unit charge) with the electric

charge density and current. But if these were combined with

the condition that any change of charge could occur only by

means of a current (expressed by a continuity equation analo-

gous to (4.5) ;
see Appendix, 4), an inadequacy became obvious.

In the language of that time, the result was formulated by

saying that no open currents (hke discharge of condensers)

oould be described by this theory. Therefore something was

wrong in the equations, and an inspection showed a suspicious

feature, a lack of symmetry. The terms expressing Faraday’s

induction law (production of electric force by the time variation
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ofthe magnetic field) hadno counterpart obtainedby exchanging

the symbols for electric and magnetic quantities (production of

magnetic force by the time variation ofthe electric field). With-

out any direct experimental evidence Maxwell postulated this

inverse effect and added to his equations the corresponding

term, which expresses that a change of the electric field (dis-

placement current) is, in its magnetic action, equivalent to an

ordinary current. It was a guess based on a belief in harmony.

Yet by some mathematical reasoning it can be connected with

one single but highly significant fact which sufficed to convince

Maxwell of the correctness of his conjecture—just as Newton
was convinced of the correctness of his law of gravitation by one

single numerical coincidence, the calculation of terrestrial^

gravity from the moon’s orbit. Maxwell showed that his modified

equations had solutions representing waves, the velocity, c, of

which could be expressed in terms ofpurely electric and magnetic

constants
;
for the vacuum c turned out to be equal to the ratio

of a unit of charge measured electrostatically (by Coulomb’s

law) and electromagnetically (by Oersted’s law). This ratio, a

quantity of the dimensions of a velocity, was known from

measurements by Kohlrausch and Weber, and its numerical

value coincided with the velocity of light. That could hardly

be accidental, indeed, and Maxwell could pronounce the electro-

magnetic theory of light.

The final confirmation of Maxwell’s theory was, after his

death, obtained by Hertz’s discovery of electromagnetic waves*

I cannot follow the further course of events in the establish-

ment of electi;omagnetic theory. I only wish to stress the point

that the use of contact forces and field equations, i.e. the

establishment of contiguity, in electromagnetism was the result

of a long struggle against preconceptions of Newtonian origin.

This confirms my view that the question of contiguity is not a

metaphysical one, but an empirical one.

We have now to see whether the laws of electromagnetism

satisfy the principle of antecedence. An inspection of Maxwell’s

equations (see Appendix, 4)
shows that a reversal of time,

—ty leaves everything, including the continuity equation,
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unchanged, if the electric density and field are kept unchanged

while the electric current and magnetic field are reversed. This

is a kind of reversibility very similar to that of mechanics,

where a change of the sign of all velocities makes the system

return to its initial state. The difference is only a practical one

:

a change of sign of all current densities and the whole magnetic

field is not as simple to perform as that ofa finite set of velocities.

The situation is best seen by considering an electromagnetic

wave spreading from a point source
;
the corresponding solution

of Maxwell’s equation is given by so-called retarded potentials

which express the electromagnetic state at a pointP for the time

t in terms of the motion of the source at the time t—rjc, where r

is the distance ofP from the source. But there also exist other

solutions, advanced potentials, which refer to the later time

t+r/c and represent a wave contracting towards the source.

Such contracting waves are of course necessary for solving

certain problems. Imagine, for instance, a spherical wave

refiected by a concentric spherical mirror. However, such a

mirror must be absolutely perfect to do its duty, and there

appears to be something improbable about the occurrence of

advanced potentials in nature. For the description of ele-

mentary processes of emission of atoms or electrons one has

supplemented Maxwell’s equations by the rule that only retarded

jsolutions are allowed. In this way a kind of irreversibility can

!be introduced and the principle of antecedence satisfied. But

'this is altogether artificial and unsatisfactory. The irreversi-

bility of actual electromagnetic processes has its roots in other

facts^which we shall later have to describe in detail. Maxwell’s

equations themselves do not satisfy the postulate ofantecedence.

RELATIVITY AND THE FIELD THEORY OF GRAVITATION

The situation which we have now reached is that which I

found when I began to study almost half a century ago. There

existed, more or less peacefully side by side, Newton’s mechanics

of instantaneous action over any distance, Cauchy’s mechanics

of continuous substances, and Maxwell’s electrodynamics, the

lattertwo satisfyingthe postulate ofcontiguity. Ofthese theories,
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Maxwell’s seemed to be the most promising and fertile, and the

idea began to spread that possibly aU forces ofnature might be of

electromagnetic origin. The problem had to be envisaged, how to

reconcile Newton’s gravitational forces with the postulate of con-

tiguity ; the solution was Einstein’s general theory of relativity.

This is a long and interesting story by itself which involves

not only the notion of cause with which we are concerned here,

but other philosophical concepts, namely those concerned with

space and time. A detailed discussion of these problems would

lead us too far away from our subject, and I think it hardly

necessary to dwell on them because relativity is to-day widely

known and part of the syllabus of the student of mathematics

and physios as weU. So I shall give a very short outMne only.

The physical problems which led to the theory of relativity

were those concerned with the optical and electromagnetic

phenomena of fast-moving bodies. There are two t3rpes of

experiments: those using the high velocity of celestial bodies

(e.g. Michelson’s and Morley’s experiment) and those using fast

electrons or ions (e.g. Bucherer’s measurement of the mass of

electrons in cathode rays as a function of the velocity) . Thework

ofLorentz, FitzGerald, Poincar^, and others prepared theground

for Einstein’s discovery that the root of all difficulties was the

assumption of a universal time valid for all moving systems of

reference. He showed that this assumption has no foundation

in any possible experience and he replaced it by a simple defini-

tion of relative time, valid in a given coordinate system, but

different from the time of another system in relative motion*

The formal layr of transformation from one space-time system

to another was already known, owing to an analysis of Lorentz

;

it is in fact an intrinsic property of Maxwell’s equations. The,

Lorentz transformation is linear; it expresses the physical

equivalence of systems in relative motion with constant velocity

(see Appendix, 5).

Einstein’s theory ofgravitation is formally based on a general-

ization of these transformations into arbitrary, non-linear ones

;

with the help of these one can express the transition from one

system of reference to another accelerated (and simultaneously



28 CONTIGXnTY

deformed) one. The physical idea behind this mathematical

formalism has been already mentioned: the exact proportion-

ality of mass, as defined by inertia, and of mass as defined by

gravitation, equation (3.10); or, in other words, the fact that

in Newton's law of gravitational motion (3.4) the (inertial) mass

does not appear.

Einstein succeeded in establishing equations for the gravita-

tional field by identifying the components of this field with the

quantities which define the geometry of space-time, namely

the coefficients of the line element

= 2 Qfxv
dx^>

(
4 * 15 )

ll»V

where x^, x^ stand for the space coordinates x^ y, z, x^ for the

time t.

In ordinary 3-dimensional Euclidean geometry the are

constant and can, by a proper choice of the coordinate system,

be normalized in such a way that

= 0 for /X 7^ V.

Minkowski showed that special relativity can be regarded as

a 4-dimensional geometry, where time is added as the fourth

coordinate, but stiU with constant g^^y which can be normalized to

9ll = = 9^33 = 1. ^44
= “1. V = ^ ^ (^-l^)

It was further known from the work of Riemann that a very

general type of non-Euclidean geometry in 3-dimensional space

could be obtained by taking the g^^ as variable functions of

x^, x^y x^y and the mathematical properties of this geometry had
been thoroughly studied (Levi-Civita, Ricci).

Einstein generalized Riemann’s formalism to four dimensions,

assuming that the g^^, depend not only on x^,x^yX^y but also on

x^y the time. However, he regarded the g^^, not as given fimctions

of x^y x^y x^y x^ but as field quantities to be calculated from the

distribution of matter, formed a set of quantities which

can be regarded as a measure of the ‘curvature’ of space and are

functions of the and their first and second derivatives, and

postulated equations of the form

7? — k-T (4.17)
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where /c is a constant and the are generalizations of the

tensions in matter, defined in (4.8): one has to supplement the

tensor T by a fourth row and column, where 2i4 ,
T24 , Jgi are

the components of the density of momentum, 2^44 the density of

energy. These equations (4.17) are invariant in a very general

sense, namely for all continuous transformations of space-time,

and they are essentially uniquely determined by this property

and the postulate that no higher derivatives than the second-

order ones should appear.

If the distribution of matter is given, i.e. the 2]^^ are known,

the field equations (4.17) allow one to calculate the i.e. the

geometry of space. Einstein found the solution for a mass point

as source ofthe field, and by assuming that the motion ofanother

particle was determined by a geodesic, or shortest, or straightest

line in this geometry, he showed that Newton’s laws of planetary

motion follow as a first approximation. But higher approxima-

tions lead to small deviations, some of which can be observed.

I cannot enter into the discussion of all the consequences of the

new gravitational theory
;
Einstein’s predictions have been con-

firmed, although some of them are at the limit of observational

technique. But I wish to add a remark about a theoretical point

which is not so well known, yet very important. The assump-

tion that the motion of a particle is given by a geodesic is

obviously an unsatisfactory feature
;
one would expect that the

field equations alone should determine not only the field pro-

duced by particles but also the reaction of the particles to the

field, that is their motion. Einstein, with his collaborators

Infeld and Hoffmann, has proved that this is in fact the case,

and the same result has been obtained independently and, as I

think, in a considerably simpler way, by the Russian physicist,.

Fock. On the basis of these admirable papers, one can say that!

the field theory of gravitatien is logically perfect—^whether iu

will stand all observational tests remaijps to be seen.

From the standpoint of the philosophical problem, which is

the subject of these lectures, there are several conclusions to be

drawn. The first is that now physical geometry, that is, not some

abstract mathematical system but the geometrical aspect of the
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behaviour of actual bodies, is subject to the cause-effect relation

and to all related principles like any other btanch of science.

The mathematicians often stress the opposite point of view;

they speak ofthe geometrization ofphysics, but though it cannot

be denied that the mathematical beauty of this method has

inspired numerous valuable investigations, it seems to me an

over-estimation of the formalism. The main point is that

Einstein’s geometrical mechanics or mechanical geometry

satisfies the principle of contiguity. On the other hand, ante-

cedence, applied to two consecutive configurations as cause and

effect, is not satisfied, or not more than in electrodynamics
;
for

there is no intrinsic direction in the fiow of time contained in

the equations. The theory is deterministic, at least in principle

:

the future or past motion of particles and the distribution of the

gravitational field are predictable from the equations, if the

situation at a given time is known, together with boundary

conditions (vanishing of field at infinity) for all times. But as

the gravitational field travels between the particles with finite

velocity, this statement is not identical with Newtonian deter-

minism : a knowledge is needed, not only of all particles, but also

of all gravitational waves (which do not exist in Newton’s

theory). Einstein himself values the deterministic feature of his

theory very highly. He regards it as a postulate which has to

be demanded from any physical theory, and he rejects, there-

fore, parts of modem physics which do not satisfy it.

Here I only wish to remark that determinism in field theories

seems to me of very little significance. To illustrate the power

of mechanics, Laplace invented a super-mathematician able to

predict the future ofthe world provided the positions and veloci-

ties of all particles at one moment were given to him. I can

sympathize with him in his arduous task. But I would really

pity him if he had not only to solve the numerous ordinary

differential equations of Newtonian type but also the partial

differential equations of the field theory with the particles as

singularities.
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We have now to discuss the experiences which make it possible

to distinguish in an objective empirical way between past and

future or, in our terminology, to establish the principle of

antecedence in the chain of cause and effect. These experiences

are connected with the production and transfer of heat. There

would be a long story to tell about the preliminary steps

necessary to translate the subjective phenomena of hot and cold

into the objective language of physics : the distinction between

the quality ‘temperature’ and the quantity ‘heat’, together

with the invention of the corresponding instruments, the ther-

mometer and calorimeter. I take the technical side of this

development to be well known and I shall use the thermal

concepts in the usual way, although I shall have to analyse them
presently from the standpoint of scientific methodology. It was

only natural that the measurable quantity heat was first

regarded as a kind of invisible substance called caloric. The
fiow ofheat was treated with the methods developed for material

liquids, yet with one important difference: the inertia of the

caloric fluid seemed to be negligible; its flow was determined

by a differential equation which is not of the second but of the

first order in time. It is obtained from the continuity equation

(see (4.5)) (J+divq = 0 (6 . 1 )

by assuming that the change of the density of heat Q is propor-

tional to the cl^ange of temperature T,hQ ^ c 8T (where c is the

specific heat), while the current of heat q is proportional to the

negative gradient of temperature, q == — /^ grad T (where k is

the coefficient of conductivity). Hence

= icAT, (5.2)

a differential equation of the first order in time. This equa-

tion was the starting-point of one of the greatest discoveries

in mathematics, Fourier’s theory of expansion of arbitrary
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functions in terms of orthogonal sets ofsimple periodic functions,

the prototype of numerous similar expansions and the embryo

from which a considerable part of modem analysis and mathe-

matical physics developed.

But that is not the aspect from which we have here to regard

the equation (5.2) ;
it is this:

The equation does not allow a change of t into —i, the result

cannot be compensated by a change of sign of other variables

as happens in Maxwell’s equations. Hence the solutions exhibit

an essential difference of past and future, a definite ‘flow of time’

as one is used to say—meaning, of course, a flow of events in

time. For instance, an elementary solution of (5.2) for the

temperature distribution in a thin wire along the :r-direction is

T-% = (5.3)

which describes the spreading and levelling out of an initially

high temperature concentrated near the point x = 0^ an

obviously irreversible phenomenon.

I do not know enough of the history of physics to understand

how this theory of heat conduction was reconciled with the

general conviction that the ultimate laws of physics were of the

Newtonian reversible t3rpe.

Before a solution of this problem could be attempted another

important step was necessary: the discovery of the equivalence

of heat and mechanical work, or, as we say to-day, of the first

law of thermodynamics. It is important to remember that this

discovery was made considerably later than the invention of the

steam-engine. Not only the production of heat by mechanical

work (e.g. through friction), but also the production of work

from heat (steam-engine) was known. The new feature was the

statement that a given amount of heat always corresponds to a

definite amount of mechanical work, its ‘mechanical equivalent’.

Robert Mayer pronounced this law on very scanty and indirect

evidence, but obtained a fairly good value for the equivalent

from known properties of gases, namely from the difference of

heat necessary to raise the temperature by one degree if either
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the volume is kept constant or the gas allowed to do work

against a constant pressure. Joule investigated the same

problem by systematic experiments which proved the essential

point, namely that the work necessary to transfer a system from

one equilibrium state to another depends only on these two

states, not on the process of application of the work. This is the

real content of the first law
;
the determination of the numerical

value of the mechanical equivalent, so much stressed in text-

books, is a matter of physical technique. To get our notions

clear, we have now to return to the logical and philosophical

foundations of the theory of heat.

The problem is to transform the subjective sense impressions

ofhot and cold into objective measurable statements. The latter

are, of course, again somewhere connected with sense impres-

sions. You cannot read an instrument without looking at it.

But there is a difference between this looking at, say, a thermo-

meter with which a nurse measures the temperature of a patient

and the feeling of being hot under which the patient suffers.

It is a general principle of science to rid itself as much as

possible from sense qualities. This is often misunderstood as

meaning elimination of sense impressions, which, of course, is

absurd. Science is based on observation, hence on the use of the

senses. The problem is to eliminate the subjective features and

to maintain only statements which can be confirmed by several

individuals in an objective way. It is impossible to explain to

anybody what I mean by saying ‘This thing is red’ or ‘This

thing is hot’. The most I can do is to find out whether other

persons call the same things red or hot. Science aims at a closer

relation between word and fact. Its method consists in finding

correlations of one kind of subjective sense impressions with

other kinds, using the one as indicators for the other, and in this

way establishes what is called a fact of observation.

Here I have ventured again into metaphysics. At least, a

philosopher would claim that a thorough study of these

methodological principles is beyond physics. I think it is again

a rule of our craft as scientists, like the principle of inductive

inference, and I shall not analyse it further at this moment.

D
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111 the case of thermal phenomena, the problem is to define

the quantities involved—temperature, heat—by means of

observable objective changes in material bodies. It turns out

that the concepis of mechanics, configuration and force, strain

and stress, suffice for this purpose, but that the laws ofmechanics

have to be essentially changed.

Let us consider for simplicity only systems of fluids, that is of

continuous media, whose state in equilibrium is defined by one

single strain quantity, the density, instead of which we can also,

for a given mass, take the total volume V. There is also only one

stress quantity, the pressure p. From the standpoint of

mechanics the pressure in equilibrium is a given function of the

volume, p == /(F).

Now all those experiences which are connected with the

subjective impression of making the fluid hotter or colder, show

that this law of mechanics is wrong : the pressure can be changed

at constant volume—namely ‘by heating’ or ‘by cooling’.

Hence the pressure p can be regarded as an independent

variable besides the volume V, and this is exactly what thermo-

dynamics does.

The generalization for more complicated substances (such as

those with rigidity or magnetic polarizability) is so obvious that

I shall stick to the examples of fluids, characterized by two

thermodynamically independent variables V, p. But it is

necessary to consider systems consisting of several fluids, and

therefore one has to say a word about different kinds of contact

between them.

To shorten the expression, one introduces the idea of ‘walls’

separating different fluids. These walls are supposed to be so

thin that they play no other part in the physical behaviour of

the system than to define the interaction between two neigh-

bouring fluids. We shall assume every wall to be impenetrable

to matter, although in theoretical chemistry semi-permeable

partitions are used with great advantage. Two kinds of walls

are to be considered.

An adiabatic wall is defined by the property that equilibrium

of a body enclosed by it is not disturbed by any external process
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as long as no part of the wall is moved (distance forces being

excluded in the whole consideration).

Two comments have to be made. The first is that the

adiabatic property is here defined without using the notion of

heat ;
that is essential, for as it is our aim to define the thermal

concepts in mechanical terms, v/e cannot use them in the ele-

mentary definitions. The second remark is that adiabatic

enclosure of a system can be practically realized, as in the Dewar
vessel or thermos fiask, with a high degree of approximation.

Without this fact, thermodynamics would be utterly im-

practicable.

The ordinary presentations of this subject, though rather

careless in their definitions, cannot avoid the assumption of the

possibility of isolating a system thermally; without this no

calorimeter would work and heat could not be measured.

The second type of wall is the diathermanous wall, defined by
the following property : if two bodies are separated by a diather-

manous wall, they are not in equilibrium for arbitrary values of

their variables and but only if a definite relation

between these four quantities is satisfied

= 0. (5.4)

This is the expression ofthermal contact; the wall is only intro-

duced to symbolize the impossibility of exchange of material.

The concept of temperature is based on the experience that

two bodies, being in thermal equilibrium with a third one, are

also in thermal equilibrium with another. If we write (5.4) in

the short form J^(l, 2) = 0, this property of equilibrium can be

expressed by saying that of the three equations

F{2, 3) == 0, J(3, 1) = 0
,

F{1, 2) = 0
, (5.5)

any two always involve the third. This is only possible if

(5.4) can be brought into the form

/i(jPi> K) == /2{i^2> (^•^)

Now one can use one of the two bodies, say 2, as thermometer
and introduce the value of the function

hiVz, V^) = ^ (5.7)
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as empirical temperature. Then one has for the other body the

so-called equation of state

fiiPi, K) = (6.8)

Any arbitrary function of ^ can be chosen as empirical tem-

perature with equal right; the choice is restricted only by

practical considerations. (It would be impractical to use a ther-

mometric substance for which two distinguishable states are in

thermal equilibrium.) The curves = const, in thep F-plane are

independent of the temperature scale
;
they are called isotherms.

It is not superfluous to stress the extreme arbitrariness of the

temperature scale. Any suitable property of any substance can

be chosen as thermometric indicator, and if this is done, still

the scale remains at our disposal. If we, for example, choose a

gas at low pressures, because of the simplicity of the isothermal

compression lawpV = const., there is no reason to takepV d'

as measure of temperature: one could just as well take (pV)^ or

^jipV). The definition of an ‘absolute’ scale of temperature was

therefore an mgent problem which was solved by the discovery

of the second law of thermodynamics.

The second fundamental concept of thermodynamics, that of

heat, can be defined in terms of mechanical quantities by a

proper interpretation of Joule’s experiments. As I have pointed

out already, the gist of these experiments lies in the following

fact: If a body in an adiabatic enclosure is brought from one

(equilibrium) state to another by applying external work, the

amount of this work is always the same in whatever form

(mechanical, electrical, etc.) and manner (slow or fast, etc.) it is

applied.

Hence for a given initial state {p^, Vq) the work done adia-

baticaUy is a function U of the final state {p, F), and one can

W=U-U„; (6.9)

the function U(p, V) is called the energy of the system. It is a

quantity directly measurable by mechanical methods.

If we now consider a non-adiabatic process leading from the

initial state (p^, Vf) to the final state (p, F), the dijQFerence

U

^

not be zero, but mn be determined if the energy
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function V(p, V) is known from previous experiment. This

difference ^ q (5 10
)

is called the heat supplied to the system during the process.

Equation (5.10) is the definition of heat in terms of mechanical

quantities.

This procedure presupposes that mechanical work is measur-

able however it is applied
;
that means, for example, that the

displacements of and the forces on the surface of a stirring-

wheel in a fiuid, or the current and resistance of a wire heating

the fluid, must be registered even for the most violent reactions.

Practically this is difficult, and one uses either stationary pro-

cesses of a comparatively long duration where the irregular

initial and final stages can be neglected (this includes heating

by a stationary current), or extremely slow, ‘quasi-static*

processes
;
these are in general (practically) reversible, since no

kinetic energy is produced which could be irreversibly destroyed

by friction. In ordinary thermodynamics one regards every

curve in the ^)F-plane as the diagram of a reversible process;

that means that one allows infinitely slow heating or cooling by
bringing the system into thermal contact with a series of large

heat reservoirs which difiFer by small amounts of temperature.

Such an assumption is artificial; it does not even remotely

correspond to a real experiment. It is also quite superfluous.

We can restrict ourselves to adiabatic quasi-static processes,

consisting of slow movements ofthe (adiabatic) walls. For these

the work done on a simple fluid is

dW = -pdV, (6.11)

where p is the equilibrium pressure, and the first theorem of

thermod3mamics (5.10) assumes the form

dQ == dU+pdV = 0. (5.12)

For systems of fluids separated by adiabatic or diathermanous

walls the energy and the work done are additive (according to

our definition of the walls) ; hence, for instance,

dQ == dQ:i^+dQ^ = dU+p^dVi+P2dV2, (6.13)

where
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This equation is of course only of interest for the case of

thermal contact where the equation (5.6) holds
;
the system has

then only three independent variables, for which one can choose

and the temperature t?, defined by (5.7) and (5.8). Then

^2 = &), and (5.13) takes the form

= (f
- »

(6.14)

Every adiabatic quasi-static process can be represented as a

line in the three-dimensional l^l^i?-space which satisfies this

equation; let us call these for brevity ‘adiabatic lines

\

Equation (5.14) is a differential equation of a type studied by
Pfaff. Pfaffian equations are the mathematical expression of

elementary thermal experiences, and one would expect that the

laws of thermodynamics are connected with their properties.

That is indeed the case, as Carath^odory has shown. But

classical thermodynamics proceeded in quite a different way,

introducing the conception of idealized thermal machines which

transform heat into work and vice versa (William Thomson

—

Lord Kelvin), or which pump heat from one reservoir into

another (Clausius). The second law of thermodynamics is then

derived from the assumption that not all processes of this kind

are possible
:
you cannot transform heat completely into work,

nor bring it from a state of lower temperature to one of higher

‘without compensation’ (see Appendix, 6). These are new and

strange conceptions, obviously borrowed from engineering.

I have mentioned that the steam-engine existed before thermo-

dynamics; it was a matter of course at that time to use the

notions and experiences of the engineer to obtain the laws of

heat transformation, and the establishment of the abstract

concepts of entropy and absolute temperature by this method

is a wonderful achievement. It would be ridiculous to feel any-

thing but admiration for the men who invented these methods.

But even as a student, I thought that they deviated too much

from the ordinary methods of physics
; I discussed the problem

with my mathematical friend, Caratheodory, with the result

that he analysed it and produced a much more satisfactory
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solution. This was about forty years ago, but still all text-

books reproduce the ‘classical’ method, and I am almost certain

that the same holds for the great majority of lectures—I know,

however, a few exceptions, namely those ofthe late R. H. Fowler

and his school. This state of affairs seems to me one ofunhealthy

conservatism. I take in these lectures an opportunity to advo-

cate a change.

The central point of Caratheodory’s method is this. The

principles from which Kelvin and Clausius derived the second

law are formulated in such a way as to cover the greatest

possible range of processes incapable of execution: in no way
whatever can heat be completely transformed into work or

raised to a higher level of temperature. Caratheodoiy remarked

that it is perfectly sufficient to know the existence of some

impossible processes to derive the second law. 1 need hardly

say that this is a logical advantage. Moreover, the impossible

processes are already obtained by scrutinizing Joule’s experi-

ments a little more carefully. They consisted in bringing a

system in an adiabatic enclosure from one equilibrium state to

another by doing external work : it is an elementary experience,

almost obvious, that you cannot get your work back by reversing

the process. And that holds however near the two states are.

One can therefore say that there exist adiabatically inaccessible

states in any vicinity of a given state. That is Carath^odory’s

principle.

In particular, there are neighbour states of any given

one which are inaccessible by quasi-static adiabatic processes.

These are represented by adiabatic lines satisfying the

Pfaffian equation (5.14). Therefore the question arises: Does

Carath^odory’s postulate hold for any Pfaffian or does it mean
a restriction ?

The latter is the case, and it can be seen by very simple

mathematics indeed, of which I shall give here a short sketch

(see Appendix, 7).

Let us first consider a Pfaffian equation of two variables,

X and y,

dQ X dx+Y dy, (5.15)
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where X, F are functions of x^y. This is equivalent to the

ordinary differential equation

dx F’
(5.16)

which has an infinite number of solutions <l){x,y) = const.,

representing a one-parameter set of curves in the (ic,t/)-plane.

Along any of these curves one has

d<f> — — dx dy = 0,^ dx ^ dy
^ (6.17)

and this must be the same condition oS the given Pfafifian;

hence one must have dQ = A d(j). (5.18)

Each Pfaffian dQ oi two variables has therefore an ‘integrating

denominator’ A, so that dQjX is a total differential.

For Pfaflftans of three (or more) variables,

dQ == Xdx-\-Y dy-{-Zdz (5.19)

this does not hold. It is easy to give analytical examples (see

Appendix, 7) ;
but one can see it geometrically in this way: if in

(5.19) dx, dyy dz are regarded as finite differences x, — y, ^—2,

it is the equation of a plane through the point x,y,z] one has a

plane through each point of space, continuously varying in

orientation with the position of this point. Now if a function
<f>

existed, these planes would have to be tangential to the surfaces

^(x, y, z) = const. But one can construct continuously varying

sets of planes which are not ‘integrable’, i.e. tangential to a set

of surfaces. For example, take all circular screws with the same

axis, but varying radius and pitch, and construct at each point

of every screw the normal plane
;
these obviously form a non-

integrable set of planes.

Hence all PfafiSans can be separated into two classes : those of

the form dQ = Xd<f>, which have an ‘integrating denominator’

and represent the tangential planes ofa set ofsurfaces ^ = const.,

and those which lack this property.

Now in the first case, dQ = Ad<^, any line satisfying the

PfafSian equation (5.19) must he in the surface ^ = const.

Hence an arbitrary pair of points Pq and P in the xy2:-space
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cannot be connected by such a line. This is quite elementary.

Not quite so obvious is the inverse statement which is used in the

thermodynamic application: If there are points P in any

vicinity of a given point which cannot be connected with P^

by a line satisfying the Pfaffian equation (5.19), then there

exists an integrating denominator and one has dQ = Xd^,

One can intuitively understand this theorem by a continuity

consideration : All points P inaccessible from Pq will fill a certain

volume, bound by a surface of accessible points going through Pq.

Further, to each inaccessible point there corresponds another

one in the opposite direction
;
hence the boundary surface must

contain all accessible points : which proves the existence of the

function
<f>,

so that dQ = Xd(f> (see Appendix, 7).

The application of this theorem to thermodynamics is now
simple. Combining it with Carath^odory’s principle, one has for

any two systems

^Qi ^ dQ2 = X^d^^y (5.20)

and for the combined system

dQ = dQ^+dQ2 = A#; (5.21)

hence Xd<f) X^d^^-\-X2 d<j)2 * (5.22)

Consider in particular two simple fluids in thermal contact;

then the system has three independent variables Tj, Tg,!?, which

can be replaced by Then (5.22) shows that ^ depends

only on
<f>2 ,

and not on &, while

^ /K 00\~ A ’

5(^2
“ A

’ ^ ^

Hence these quotients are also independent of

1 ^ = 0
,

d& A
= 0

8& X ’

from which one infers

Xi d& X2 X d&

Now Aj is a variable of the first fluid only, therefore only
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dependent on
<f>^

and in the same way Ag = ^2(^2^^)-

first equality (5.24) can only hold if both quantities depend only

on Hence
alogAi _ ^logAg _ ^logA _~ d&

where gr(i9') is a universal function, namely numerically identical

for different fluids and for the combined system.

This simple consideration leads with ordinary mathematics

to the existence of a universal function of temperature. The rest

is just a matter of normalization. From (5.25) one finds for each

system

log A = J ^( 7?) dT^+logO, A = (5.26)

where <[> depends on the corresponding

If one now defines

T{&) =
^

(5.27)

where the constant C can be fixed by prescribing the value of

Ij—Tg reproducible states of some normal substance

(e.g. = 100°, if corresponds to the boiling-point,

the freezing-point of water at 1 atmosphere of pressure), then

dQ = Xd<i> = Td8. (6.28)

T is the thermodjmamical or absolute temperature and S the

entropy.

Equation (5.28) refers only to quasi-static processes, that

is, to sequences of equilibrium states. To get a result about

real dynamical phenomena one has to apply Carath6odory’s

principle again, considering a finite transition from an initial

state FJ, F§, 8^ to a final state TJ, P^, 8, One can reach the latter

one in two steps: first changing the volume quasi-statically

(and adiabatically
)
from FJ, F| to Tj, Pg, the entropy remaining

constant, equal to and then changing the state adiabatically,

but irreversibly (by stirring, etc.) at constant volume, so that

goes over into 8,

Now if any neighbouring value 8 of 5® could be reached in

this way, one would have a contradiction to Carath^odory’s
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principle, as the volumes are of course arbitrarily changeable.

Hence for each such process one must have either S ov

S < S^. Continuity demands that the same sign holds for all

initial states; it holds also for different substances since the

entropy is additive (as can be easily seen). The actual sign ^
or < depends on the choice of the constant C in (5.27); if this is

chosen so that T is positive, a single experience, say with a gas,

shows that entropy never decreases.

It may not be superfluous to add a remark on the behaviour

of entropy for the case of conduction of heat. As thermo-

dynamics has to do only with processes w^here the initial and

final states are equilibria, stationary flow cannot be treated : one

can only ask. What is the final state of two initially separated

bodies brought into thermal contact ? The difficulty is that a

change of entropy is only defined by quasi-static adiabatic

processes
;
the sudden change of thermal isolation into contact,

however, is discontinuous and the processes inside the system

not controllable. Yet one can reduce this process to the one

considered before. By quasi-static adiabatic changes of volume

the temperatures can be made equal without change of entropy

;

then contact can be made without discontinuity, and the initial

volumes quasi-statically restored, again without a change of

entropy. The situation is now the same as in the initial state

considered before, and it follows that an}^ process leading to the

final state must increase the entropy.

The whole chain of considerations can be generalized for more

compheated systems without any difficulty. One has only to

assume that all independent variables except one are of the type

represented by the volume, namely arbitrarily changeable.

If one has to deal, as in chemistry, with substances which are

mixtures of different components, one can regard the concentra-

tions of these as arbitrarily variable with the help of semi-

permeable walls and movable pistons (see Appendix, 8).

By using thermodynamics a vast amount of knowledge has

been accumulated not only in physics but in the borderland

sciences ofphysico-chemistry, metallurgy, mineralogy, etc. Most

ofit refersto equilibria. In fact, the expression ‘ thermodynamics ’
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is misleading. The only dynamical statements possible are

concerned with the irreversible transitions from one equilibrium

state to another, and they are of a very modest character, giving

the total increase of entropy or the decrease of free energy

F = U—TS, The irreversible process itself is outside the scope

of thermodynamics.

^ The principle of antecedence is now satisfied
;
but this gain is

paid for by the loss of all details of description which ordinary

dynamics of continuous media supplies.

Can this not be mended ? Why not apply the methods of

Cauchy to thermal processes, by treating each volume element

as a small thermodynamical system, and regarding not only

strain, stress, and energy, but also temperature and entropy as

continuous functions in space ? This has of course been done,

but with limited success. The reason is that thermodynamics is

definitely connected with walls or enclosures. We have used the

adiabatic and diathermanous variety, and mentioned semi-

permeable walls necessary for chemical separations; but a

volume element is not surrounded by a wall, it is in free contact

with its neighbourhood. The thermodynamic change to which

it is subject depends therefore on the flux of energy and material

constituents through its boundary, which themselves cannot be

reduced to mechanics. In some limiting cases, one has found

simple solutions. For instance, when calculating the velocity of

sound in a gas, one tried first for the relation between pressure

p and density p the isothermal law p = cp where c is a constant,

but found no agreement with experiment
;
then one took the

adiabatic law p = cpy where y is the ratio of the specific heats at

constant pressure and constant volume (see Appendix, 9), which

gave a much better result. The reason is that for fast vibrations

there is no time for heat to flow through the boundary of a

volume element which therefore behaves as if it were adiabati-

caUy enclosed. But by making the vibrations slower and slower,

one certainly gets into a region where this assumption does not

hold any more. Then conduction of heat must be taken into

account. The hydrodynamical equations and those of heat con-

duction have to be regarded as a simultaneous system. In this



ANTECEDENCE: THERMODYNAMICS 45

way a descriptive or phenomenological theory can be developed

and has been developed. Yet I am nnable to give an account of

it, as I have never studied it; nor have the majority of physicists

shown much interest in this kind of thing. One knows that any

flux of matter and energy can be fitted into Cauchy’s general

scheme, and there is not much interest in doing it in the most

general way. Besides, each effect needs separate constants

—

e.g. in liquids compressibility, specific heat, conductivity ofbeat,

constants of diffusion
;
in solids elastic constants and parameters

describing plastic flow, etc., and very often these so-called con-

stants turn out to be not constants, but to depend on other

quantities (see Appendix, 10).

Therefore one can rightly say that with ordinary thermo-

dynamics the descriptive method of physics has come to its

natural end. Something new had to appear.
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KINETIC THEORY OF GASES

The new turn in physics was the introduction of atomistics and

statistics.

To follow up the history of atomistics into the remote past is

not in the plan of this lecture. We can take it for granted that

since the days of Demokritos the hypothesis of matter being

composed of ultimate and indivisible particles was familiar to

every educated man. It was revived when the time was ripe.

Lord Kelvin quotes frequently a Father Boscovich as one of the

first to use atomistic considerations to solve physical problems
;

he lived in the eighteenth century, and there may have been

others, of whom I know nothing, thinking on the same lines.

The first systematic use of atomistics was made in chemistry,

where it allowed the reduction of innumerable substances to a

relatively small stock ofelements. Physics follow ed considerably

later because atomistics as such was of no great use without

another fundamental idea, namely that the observable properties

of matter are not intrinsic qualities of its smallest parts, but

averages over distributions governed by the laws of chance.

The theory of probability itself, which expresses these law^s, is

much older; itsprangnotfromtheneedsofnaturalsciencebutfrom

gambling and other, more or less disreputable, human activities.

The first use of probability considerations in science was made
by Gauss in his theory of experimental errors. I can suppose

that every scientist knows the outlines of it, yet I have to dwell

upon it for a few moments because of its fundamental and

somewhat paradoxical aspect. It has a direct bearing on the

method of inference by induction which is the backbone of all

human experience. I have said that in my opinion the signifi-

cance of this method in science consists in the establishment of a

code of rules which form the constitution of science itself. Now
the curious situation arises that this code of rules, which ensures

the possibility of scientific laws, in particular of the cause--efifect
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relation, contains besides many other prescriptions those related

to observational errors, a branch of the theory of probability.

This shows that the conception of chance enters into the very

first steps of scientific activity, in virtue of the fact that no

observation is absolutely correct. I think chance is a more

fundamental conception than causality
;
for whether in a con-

crete case a cause-effect relation holds or not can only be judged

by applying the laws of chance to the observations.

The history of science reveals a strong tendency to forget this.

When a scientific theory is firmly estabhshed and confirmed, it

changes its character and becomes a part of the metaphysical

background of the age : a doctrine is transformed into a dogma.

In fact no scientific doctrine has more than a probability value

and is open to modification in the light of new experience.

After this general remark, let us return to the question how
the notion of chance and probability entered physics itself.

As early as 1738 Daniel Bernoulh suggested the interpretation

of gas pressure as the effect of the impact of numerous particles

on the wall of the container. The actual development of the

kinetic theory of gases was, however, accomphshed much later,

in the nineteenth century.

The object of the theory was to explain the mechanical and

thermodynamical properties of gas from the average behaviour

of the molecules. For this purpose a statistical hypothesis was

made, often called the ‘principle of molecular chaos’: for an
‘ ideal ’ gas in a closed vessel and in absence of external forces all

positions and all directions of velocity of the molecules are

equally probable.

Applied to a monatomic gas (the atoms are supposed to be

mass points), this leads at once to a relation between volume F,

pressure ;P, and mean energy U (see Appendix, 11)

Vp = W, (6.1)

if the pressure p is interpreted as the total momentum trans-

ferred to the wall by the impact of the molecules. One has now
only to assume that the energy £7 is a measure of temperature

to obtain Boyle’s law of the isotherms. Then it follows from
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thermodynamics that TJ is proportional to the absolute tempera-

ture (see Appendix, 9) ;
one has

U = IRT, pV = RT, (6.2)

where R is the ordinary gas constant. This is the complete

equation of state (combined Boyle-Charles law), and one sees

that the specific heat of a monatomic gas for constant volume

is p.
I have mentioned these things only to stress the point that the

kinetic theory right from the beginning produced verifiable

numerical results in abundance. There could be no doubt that

it was right, but what did it really mean ?

How is it possible that probability considerations can be

superimposed upon the deterministic laws of mechanics without

a clash ?

These laws connect the state at a time t to the initial state,

at time by definite equations. They involve, however, no

restriction on the initial state. This has to be determined by

observation in every concrete case. But observations are not

absolutely accurate; the results of measurements will suffer

scattering according to Gauss’s rules of experimental errors. In

the case of gas molecules, the situation is extreme
;
for owing

to the smallness and excessive number of the molecules, there is

almost perfect ignorance of the initial state.

The only facts known are the geometrical restriction of the

position of each molecule by the walls of the vessel, and some

physical quantities of a crude nature, like the resultant pressure

and the total energy : very little indeed in view of the number of

molecules (about 10^® per c.c.).

Hence it is legitimate to apply probability considerations to

the initial state, for instance the hypothesis of molecular chaos.

The statistical behaviour of any future state is then completely

determined by the laws of mechanics. This is in particular the

case for ‘statistical equilibrium when the observable properties

are independent of time
;
in this case any later state must have

the same statistical properties as the initial state (e.g. it must

also satisfy the condition of molecular chaos). How can this be
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mathematically formulated ? It is convenient to use the equa-

tions of motion in Hamilton’s canonical form (4.3, p. 18). The
distribution is describedby a function/(^,

of all coordinates and momenta, and of time, such that fdpdq

is the probability for finding the system at time ^ in a given

element dpdq = dp-^.,.dp^dq-^,.,dq^. One can interpret this

function as the density of a fluid in a 27i-dimensional ^g-space,

called ‘phase space’
;
and, as no particles are supposed to dis-

appear or to be generated, this fluid must satisfy a continuity

equation, of the kind (4.5, p. 20), generalized for 2n dimensions,

namely (see Appendix, 3)

dt

KMk)j
,
m)\

1
^^

^Pk I

(6.3)

This reduces in virtue of the canonical equations (4.3), p. 18,

to

dt
= 0

, (6.4)

where \H,f^ is an abbreviation, the so-called Poisson bracket,

namely
V/^-^ ^f\

[H,f]
4' W* ^Pk ^9kl

(
6 .6 )

On the other hand, the convective derivative defined for three

dimensions in (4.11, p. 21) may be generalized for 2n dimensions

thus:

dt dt )• (6.6 )

Then (6.4) says that in virtue of the mechanical equations

df

dt
= 0 . (6.7)

The result expressed by the equivalent equations (6.4) and

(6.7) is called Liouville’s theorem. The density function is an

integral of the canonical equations, i.e. / = const, along any

trajectory in phase space; in other words, the substance of the

fluid is carried along by the motion in phase space, so that the

/ = J
fdpdq (6.8)

s
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over any part of the substance moving in phase space is inde-

pendent of time.

Any admissible distribution function, namely one for which

the probabilities of a configuration at different times are com-

patible with the deterministic laws of mechanics, must be an

integral of motion, satisfying the partial differential equation

(6.4). For a closed system, i.e. one which is free from external

disturbances (like a gas in a solid vessel), H is explicitly inde-

pendent of time. The special case of statistical equilibrium

corresponds to certain time-independent solutions of (6.4), i.e.

functions / satisfying
[^./] = o. (6.9)

An obvious integral of this equation isf = ^(H), where O indi-

cates an arbitrary function. This case plays a prominent part

in statistical mechanics.

Yet before continuing with these very general considerations

we had better return to the ideal gases and consider the kinetic

theory in more detail. In an ideal gas, the particles (atoms,

molecules) are supposed to move independently of one another.

Hence the function /(p,g) is a product of N functions /(x,^,^)

each belonging to a single particle and all formally identical;

X is the position vector and ^ = ( 1
/m)p the velocity vector. Then

/dxd% is the probability offinding a particle at time ^ at a specified

element of volume and velocity.

In the case where no external forces are present [dHjdt = 0,

dHjdx = 0) the Hamiltonian reduces to the kinetic energy,

H — = (l/2m)p2.

The hypothesis of molecular chaos is expressed by assuming/to
be a function of alone. This is indeed a solution of (6.9), as it

can be written in the form /= 0(H) mentioned above. No
other solution exists if the gas as a whole is homogeneous and

isotropic (i.e. all positions and directions are physically equiva-

lent; see Appendix, 12 ).

The determination of the velocity distribution function /(|2)

was recognized by Maxwell as a fundamental problem of kinetic

theory: it is the quantitative formulation of the ‘law of chance’

for this case. He gave several solutions; his first and simplest
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reasoning was this: Suppose the three components of velocity

^2* ^3 statistically independent, then

/(?*) =m+e,+m = mmimm- (e.io)

This functional equation has the only solution (see Appendix, 13
)

... (^-ll)

where a,j8 are constants.

This is Maxwell’s celebrated law of velocity distribution.

However, the derivation given is objectionable, as the supposed

independence of the velocity components is not obvious at all.

I have mentioned it because the latest proof (and as 1 think the

most satisfactory and rigorous and of the widest possible genera-

hzation) of the distribution formula uses exactly this Maxwellian

argument, only applied to more suitable variables—as we shall

presently see.

Maxwell, being aware of this weakness, gave several other

proofs which have been improved and modified by other authors.

Eventually it appears that there are two main types of argu-

ment: the equihbrium proof and the dynamical proof. We shall

first consider the equihbrium proof in some detail.

Assume each molecule to be a mechanical system with co-

ordinates ^1, momenta for which we write

simply g,p, and with a Hamiltonian H(p,q), The interaction

between the molecules will be neglected. The total number n

and the total energy U of the assembly of molecules are

given.

In order to apply the laws of probability it is convenient to

reduce the continuous set of points p, g in phase space to a dis-

continuous enumerable set of volume elements. One divides

the phase space into N small cells of volumes a)^V,o}2V,,.,,ojj^V,

where V is the total volume; hence

(
6 . 12 )

To each ceU a value of the energy H(p, q) can be attached, say

that corresponding to its centre; let these energies be cg,...,

Now suppose the particles distributed over the cells so that theraf
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are in the first cell, in the second, etc., but of course with

the restriction that the totals

(6.13)

7^1 + ^ (6.14)

are fixed. Liouville’s theorem suggests that the probability of a

single molecule being in a given cell is proportional to its volume.

Making this assumption, one has to calculate the composite

probability P for any distribution rig,..., under the restric-

tions (6.13) and (6.14).

This is an elementary problem of the calculus of probability

(see Appendix, 14
)
which can be solved in this way: First the

second condition (6.14) is omitted; then the probability of a

given distribution

nl

n^l Tig!- ^at!

(6.15)

If this is summed over all ni,TT2,...,Tijv satisfying (6.13), one ob-

tains by the elementary polynomial theorem

2 ^iv) — (6.16)

because of (6.12)—as it must be if P is a properly normalized

probability.

It is well known that the polynomial coefficients w ! Wg ! • • !

have a sharp maximum for = 712 = ...== n^; that means, if

all cells have equal volumes (cdi = ojg = ... = coj^) the uniform

distribution would have an overwhelming probability. Yet this

is modified by the second condition (6.14) which we have now
to take into account. The simplest method ofdoing this proceeds

in three approximations which seem to be crude, but are perfectly

satisfactory for very large numbers of particles (n-> 00 ), The

first approximation consists in neglecting all distributions of

comparatively small >^iv; then the can be treated as

continuous variables. The second approximation consists in

replacing the exact expression (6.15) by its asymptotic value for
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large % by using Stirling’s formula log(n!) -> n(logn— 1) (see

Appendix, 14), and the result is

logP = —nilogni—
(6.17)

The third approximation consists in the following assumption:

the actual behaviour of a gas in statistical equilibrium is deter-

mined solely by the state of maximum probability; all other

states have so little chance to appear that they can be neglected.

Hence one has to determine the maximum of logP given by

(6.17) under the conditions (6.13) and (6.14). Using elementary

calculus this leads at once to

% - (6.18)

where a and )3 are two constants which are necessary in order to

satisfy the conditions (6.13), (6.14). Yet these constants play a

rather different part.

Ifone has to do with a mixture oftwo gases A and B with given

numbers and one gets two conditions of the type (6.13)

but only one of the type (6.14), expressing that the total energy

is given.

Hence one obtains

4^) = (6.19)

with two different constants and but only one There-

fore P is the parameter of thermal equilibrium between the two

constituents and must depend only on temperature.

Indeed, if one now calculates the mean energy U and the

mean pressure p, one can apply thermodynamics and sees

easily that the second law is satisfied if

P = (
6 .20 )

where T is the absolute temperature and k a constant, called

Boltzmann’s constant. At the same time it appears that the

entropy is given by

S = *logP = —k’^n^logna. (6.21)
a

All these results are mainly due to Boltzmann; in particular (6. 18)
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is called Boltzmann’s distribution law. It obviously contains

Maxwell’s law (6.11) as a special case, namely for mass points.

We have now to ask: Is this consideration which I called the

equilibrium proof of the distribution law really satisfactory ?

One objection can be easily dismissed, namely that the

approximations made are too crude. They can be completely

avoided. Darwin and Fowler have shown that one can give a

rigorous expression for the mean value of any physical quantity

in terms of complex integrals, containing the so-called ‘partition

function’ (see Appendix 15)

= F(z), (6.22)

No distribution is neglected and no use is made of the Stirling

formula. Yet in the limit n -> oo, all results are exactly the same

as given by the Boltzmann distribution function. Although this

method is extremely elegant and powerful, it does not introduce

any essential new feature in regard to the fundamental question

of statistical mechanics.

Another objection is going deeper: can the molecules of a gas

really be treated as independent ?

There are numerous phenomena which show they are not,

even if one considers only statistical equilibrium. For no real

gas is ‘ideal’, i.e. satisfies Boyle’s law rigorously, and the devia-

tions increase with pressure, ending in a complete collapse, con-

densation. This proves the existence of long-range attractive

forces between the molecules. The statistical method described

above is unable to deal with them. The first attempt to correct

this was the celebrated theory of van der Waals, which was

followed by many others. I shall later describe in a few words

the modern version of these theories, which is, from a certain

standpoint, rigorous and satisfactory.

More serious are the interactions revealed by non-equihbrium

phenomena: viscosity, conduction of heat, diffusion. They can

all be qualitatively understood by supposing that each molecule

has a finite volume, or more correctly that two molecules have a

short-rang^ repulsive interaction which prohibits a close

approach. This assumption has the consequence that there
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exists an effective cross-section for a collision, hence a mean free

path for the straight motion of a molecule. The coefficients of

the three phenomena mentioned can be reduced, by elementary

considerations, to the free path, and the results, as far as they go,

are in good agreement with observations.

All this is very good physics producing in a simple and intuitive

way formulae which give the correct order of magnitude of

different correlated effects.

But for the problem of a rigorous kinetic theory, which takes

account of the interactions and is valid not only for equilibria,

but also for motion, these considerations have only the value of

a preliminary reconnoitring. The question is: How can one

derive the hydrodynamical equations of visible motion together

with the phenomena of transformation and conduction of heat

and, for a mixture, of diffusion ?

This is an ambitious programme. For such a theory must

include the result that a gas left to itself tends to equilibrium.

Hence it must lead to irreversibility, although the laws of

ordinary reversible mechanics are assumed to hold for the mole-

cules. How is this possible ? Further, is the equilibrium obtained

in this way the same as that derived directly, say by the method

of the most probable distribution ?

To begin with the last question. Its answer represents what I

have called above the dynamical proof of the distribution law

for equilibrium.

The formulation of the non-equilibrium theory of gases is due

to Boltzmann. One can obtain his fundamental equation by

generalizing one of the equivalent formulae (6.4) or (6.7). These

are based on the assumption that each molecule moves indepen-

dently ofthe others according to the laws ofmechanics, and they

describe how the distribution / of an assembly of such particles

develops in time. Now the assumption of independence is

dropped, hence the expression on the left-hand side of (6.4) or

(6.7) is not zero; denoting by /(I) the probability density for a

certain particle 1, one can write

® ® _[^,/(i)] = cai (6.23)
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where C{1) represents the influence ofthe other molecules on the

particle 1; it is called the ‘collision integrar, as Boltzmann cal-

culates it only for the case where the orbit of the centre of a

particle can be described as straight and uniform motion

interrupted by sudden collisions. For this purpose a new and

independent application of the laws of probability is made by

assumingthatthe probabilityofa collision betweentwo particles 1

and 2 is proportional to the product ofthe probabilities of finding

them in a given configuration,/(l)/(2). Ifone then expresses that

some molecules are thrown by a collision out of a given element

of phase space, others into it, one obtains (see Appendix, 16 )

^?(l) = //
{/(l)/'(2)-/(l)/(2)}||i-?,| dhd%„ (6.24)

where/(2) is the same function as /(I), but taken for the particle

2 as argument. /(I), /(2) refer to the motion of two particles

‘before’ the collision, /'(I), /'(2) to that ‘after’ the collision; one

has to integrate over aU velocities of the particle 2, (^52 )? over

the ‘cross-section’ of the collision, (eib), which I shall not define

in detail. ‘Before’ and ‘after’ the collision mean the asymptotic

straight and uniform motions of approach and separation; it is

clear that if the former is given, the latter is completely deter-

mined foranylaw ofinteraction force—it is the two-bodyproblem

of mechanics. Hence the velocities of both particles ^1, ?2 after

the collision are known functions of those before the collision

5i, (6.23) assumes the form of an integro-differential

equation for calculating /.

This equation has been the object of thorough mathematical

investigations, first by Boltzmann and Maxwell, and later by

modem writers. Hilbert has indicated a systematic method of

solution in which each step of approximation leads to an integral

equation of the normal (so-called Fredholm) type. Enskog and

Chapman have developed this method, with some modifications,

in detail. There is an admirable book by Chapman and Cowling

which represents the whole theory of non-homogeneous gases as

a consequence of the equation (6.23). I can only mention a few

points of these important investigations.

The first is concerned with the question of equilibrium. Does
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the equation (6.23) really indicate an irreversible approach from

any initial state to a homogeneous equilibrium ? This is in fact

the case, and a very strange result indeed: the metamorphosis

of reversible mechanics into irreversible thermodynamics with

the help of probability. But before discussing this dilBBcult

question, I shall indicate the mathematical proof.

From the statistics ofequilibrium it is known how the entropy

is connected with probability, namely by equation (6.21).

Replace here the discontinuous by the continuous / and

summation by integration over the phase space, and you obtain

/S = — ifc

J
/(l)log/(l) Aqip. (6.25)

If one now calculates the time derivative d8\di by substituting

df(l)jdt from (6.23), and assuming no external interference, one

finds (see Appendix, 17)

^ > 0, (6.26)

where the = sign holds only if/(l) is independent of the space

coordinates and satisfies, as a function of the velocities,

/(l)/(2)=:/'(l)/'(2) (6.27)

identically for any collision.

The result expressed by (6.26) is often quoted as Boltzmann’s

jET-theorem (because he used the symbol H for —SIk), Boltz-

mann claimed that it gave the statistical explanation of

thermodynamical irreversibility.

Equation (6.27) is a functional equation which determines /
as a function of ‘collision invariants’, like total energy and total

momentum. If the gas is at rest as a whole, the only solution of

(6.27) is Maxwell’s (or Boltzmann’s) distribution law:

/=e“-^S H{p,q)^e. (6.28)

This iswhat I called the dynamical proof,and isamostremarkable

result indeed; for it has been derived from the mechanism of

coUisions, which was completely neglected in the previous

equilibrium methods. This point needs elucidation.

Before doing so, let me mention that the hydro-thermal

equations ofa gas, i.e. the equations of continuity, ofmotion and
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of conduction of heat, are obtained from Boltzmann’s equation

(6.23) by a simple formal process (multiplication with 1,? and

followed by integration over all velocities) in terms of the

stress tensor T—you will remember Cauchy’s general formula

(4.9)—^which itself is expressed in terms of the distribution

function /. To give these equations a real meaning, one has to

expand/ in terms of physical quantities, and this is the object of

the theories contained in Chapman and Cowling’s book. In this

wayaverysatisfactorytheory ofhydro-thermodynamicsofgases,
including viscosity, conduction ofheat, and diffusion, is obtained.

STATISTICAL MECHANICS
I remember that forty years ago when I began to read scientific

literature there was a violent discussion raging about statistical

methods in physics, especially the jff-theorem. The objections

raised have been classified into two types, one concerning reversi-

bility, the other periodicity.

Loschmidt, like Boltzmann, a member of the Austrian school,

formulated the reversibility objection in this way: by reversing

all velocities you get from any solution of the mechanical

equations another one—how can the integral /S, which depends

on the instantaneous situation, increase in both cases ?

The periodicity objection is based on a theorem of the great

French mathematician Henri Poincar6, which states that every

mechanical system is, if not exactly periodic, at least quasi-

periodic. This follows from Liouville’s theorem according to

which a given region in phase space moves without change of

volume and describes therefore a tube-shaped region of ever

increasing length. As the total volume available is finite (it is

contained in the surface of maximum energy), this tube must

somewhere intersect itself, which means that final and initial

states come eventually near together.

Zermelo, a German mathematician, who worked on abstract

problems like the theory of Cantor’s sets and transfinite num-

bers, ventured into physics by translating Gibbs’s work on

statistical mechanics into German. But he was offended by the

logical imperfections of this theory and attacked it violently.

He used in particular Poincare’s theorem to show how scanda-
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lous the reasoning of the physicists was: they claimed to have

proved the irreversible increase of a mechanical quantity for

a system which returns after a finite time to its initial state with

any desired accuracy.

These objections were not quite futile, as they led two dis-

tinguished physicists, Paul Ehrenfest and his wife Tatjana, to

investigate and clear up the matter beyond doubt in their well-

known article in vol. iv of the Mathematical Encyclopedia.

To-day we hardly need to follow all the logical finesses of this

work. It suffices to point out that the objections are based on the

following misunderstanding. Ifwe describe the behaviour of the

gas (we speak only of this simple case, as for no other case has

the jET-theorem been proved until recently) by the equation (6.4)

,

taking for H the Hamiltonian of the whole system, a function of

the coordinates and momenta of all particles, then / is indeed

reversible and quasi-periodic, no theorem can be proved.

Boltzmann’s proof is based not on this equation, but on (6.23),

where now H is the Hamiltonian of one single molecule un-

disturbed by the others, and where the right-hand term is not

zero but equal to the collision integral (7(1). The latter is taken as

representing roughly the effect of all the other molecules;

‘roughly’, that means after some reasonable averaging. This

averaging is the expression of our ignorance of the actual micro-

scopic situation. Boltzmann’s theorem says that this equation

mixing mechanical knowledge with ignorance of detail leads to

irreversibility. There is no contradiction between the two state-

ments.

But there rises the other question whether such a modification

of the fundamental equation is justified. We shall see presently

that it is indeed, in a much wider sense than that claimed by

Boltzmann, namely not only for a gas, but for any substance

which can be described by a mechanical model. We have there-

fore now to take up the question of how statistical methods can

be applied to general mechanical systems. Without such a

theory, one cannot even treat the deviations from the so-called

ideal behaviour of gases (Boyle’s law), which appear at high

pressure and low temperature, and which lead to condensation.
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Theories Kke that of van der Waals have obviously only pre-

liminary character. What is needed is a general and well-

founded formalism covering the gaseous, liquid, and solid states,

under all kind of external forces.

For the case of statistical equilibrium, this formalism was

supplied by Willard Gibbs’s celebrated book on Statistical

Mechanics (1901), which has proved to be extremely successful

in its applications (see Appendix, 18). The gist of Gibbs’s idea

is to apply Boltzmann’s results for a real assembly of many
equal molecules to an imaginary or Virtual’ assembly of many
copies of the system under consideration, and to postulate that

the one system under observation will behave like the average

calculated for the assembly. Before criticizing this assumption,

let us have a gKmpse of Gibbs’s procedure. He starts from

Liouville’s theorem (6.4) and considers especially the case of

equilibrium where the partition function/of his virtual assembly

has to satisfy equation (6.9). He states that/ = ^{H) is a solu-

tion (as we have seen) and he chooses two particular forms of

the function O. The first is

/ = = const., if E <H < E+^E,
^^ 29)= 0 outside of this interval,

where JE? is a given energy and a small interval of energy.

(In modern notation one could write 0(H) = 8(H— JE7), where

8 is Dirac’s symbolic function.) The corresponding distribution

he calls micro-canonical.

The second form is just that of Maxwell-Boltzmann,

H{p,q)=^E, (6.30)

andthe correspondingdistribution is called canonical. Gibbs shows

that both assumptions lead to the same results for the averages

of physical quantities. But the canonical is preferable, as it is

simpler to handle. ^ turns out again to be equal for systems in

thermal equilibrium; if one puts p = l/kT the formal relations

between the averages constructed with (6.30) are a true replica

of thermodynamics. For instance, the normalization condition

for the probability

J
fdpdq = J

dpdq = 1 (6.31)
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can be written

F = otl^ = kTlogZ, Z = jj
e-^/'‘^dpdq. (6.32)

This F plays the part of Helmholtz’s free energy. The integral

Z, to-day usually called the ‘partition function’, depends, apart

from the energy E, on molar parameters like the volume F.

All physical properties can be obtained by differentiation, e.g.

entropy 8 and pressure p by

This formalism has been amazingly successful in treating thermo-

mechanical and also thermo-chemical properties. For instance,

the theory of real (non-ideal) gases is obtained by writing

E = H(p,q) ^ K(p)+U(q), (6.34)

where K is the kinetic and U the potential energy; the latter

depends on the mutual interactions of the molecules. As K is

quadratic in the p, the corresponding integration in Z is easily

performed and the whole problem reduces to calculating the

multiple integral

Q z=
j j

dq^dq^^,.^ (6.35)

Still, this is a very formidable task, and much work has been

spent on it. I shall mention only the investigations initiated by

Ursell, and perfected by Mayer and others, the aim ofwhich was

to replace van der Waals’s semi-empirical equation of state by

an exact one. In fact one can expand Q into a series ofpowers of

and, introducing this into (6.32) and (6.33), one obtains the

pressure ^ as a similar series

(6.36)

where the coefficients A,-B,..., called virial coefficients, are

functions of T, One can even go further and discuss the process

of condensation, but the mathematical difficulties in the treat-

ment of the liquid state itself are prohibitive.

The range of application of Gibbs’s theory is enormous. But

reading his book again, I felt the lack of a deeper foundation.
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A few years later (1902, 1903) there appeared a series ofpapers

by Einstein in which the same formalism was developed,

obviously quite independently, as Maxwell and Boltzmann are

quoted, but not Gibbs; these papers contained two essential

improvements: an attempt to justify the statistical assumptions,

and an application to a case which at once transformed the kinetic

theory ofmatterfrom auseful hypothesis into something very real

and directly observable, namely, the theory of Brownian motion.

Concerning the foundation, Einstein used an argument which

Boltzmann had already introduced to support his distribution

law (6.18)—though this seems to be hardly necessary, as for a

real assembly the method of enumerating distributions over

cells is perfectly satisfactory. Curiously enough, this argument

of Boltzmann is based on a theorem similar to Poincare’s con-

siderations on quasi-periodicity with which Zermelo intended

to smash statistical mechanics altogether. Einstein considers a

distribution of the micro-canonical t3?'pe, in Gibbs’s nomen-

clature, where only one 'energy surface’ H[p,q) ~ Em the phase

space is taken into account. The representative point in phase

space moves always on this surface. It may happen that the

whole surface is covered in such a way that the orbit passes

through every point of the surface. Such systems are called

ergodic; but it is rather doubtful whether they exist at all.

Systems are called quasi-ergodic where the orbit comes near to

every point of the energy surface; that this happens can be seen

by an argument similar to thatwhich leads to Poincare’s theorem

of quasi-periodicity. Then it can be made plausible that the total

time of sojourn of the moving point in a given part of the energy

surface is proportional to its area; hence the time average of any

function ofp, g is obviously the same as that taken with the help

of a micro-canonical virtual assembly. In this way quasi-

periodicity is used to justify statistical mechanics, exactly

reversing Zermelo ’s reasoning. This paradox is resolved by the

remark that Zermelo beUeves the period to be large and macro-

scopic, while Einstein assumes it to be unobservably small.

Who is right? You may find the obvious answer for yourselves

(see Appendix, 19).



STATISTICAL MECHANICS 63

Modern writers use other ways of establishing the foundations

of statistical mechanics. They are mostly adaptations of the

cell-method to the virtual assembly; one has then to explain why
the average properties of a single real observed system can be

obtained by averaging over a great many systems of the virtual

assembly. Some say simply: As we do not know the real state,

we have the right to expect the average provided exceptional

situations are theoretically extremely rare—and this is of course

the case. Others say we have not to do with a single isolated

system, but with a system in thermal contact with its surround-

ings, as if it were in a thermostat or heat bath; we can then

assume this heat bath to consist of a great many copies of the

system considered, so that the virtual assembly is transformed

into a real one. I think considerations of this kind are not very

satisfactory.

There remains the fact that statistical mechanics has justified

itself by explaining a great many actual phenomena. Among
these are the fluctuations and the Brownian motion to which

Einstein applied his theory (see Appendix, 20 ). To appreciate

the importance of this step one has to remember that at that

time (about 1900) atoms and molecules were still far from being

as real as they are to-day—there were still physicists who did

not believe in them. After Einstein’s work this was hardly

possible any longer. Visible tiny particles suspended in a gas or a

liquid (colloid solution) are test bodies small enough to reveal

the granular structure of the surrounding medium by their

irregular motion. Einstein showed that the statistical properties

of this movement (mean density, mean square displacement in

time, etc.) agree qualitatively with the predictions of kinetic

theory. Perrin later confirmed these results by exact measure-

ments and obtained the first reliable value of Avogadro’s num-

ber N, the number of particles per mole. From now on kinetic

theory and statistical mechanics were definitely established.

But beyond this physical result, Einstein’s theory ofBrownian

motion had a most important consequence for scientific metho-

dology in general. The accuracy ofmeasurement depends on the

sensitivity of the instruments, and this again on the size and
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weight of the mobile parts and the restoring forces acting on

them. Before Einstein’s work it was tacitly assumed that

progress in this direction was hmited only by experimental

technique. Now it became obvious that this was not so. If an

indicator, like the needle of a galvanometer, became too small

or the suspending fibre too thin, it would never be at rest but

perform a kind of Brownian movement. This has in fact been

observed. Similar phenomena play a large part in modern

electronic technique, where the limit of observation is given by

irregular variations which can be heard as a ‘noise’ in a loud

speaker. There is a limit of observability given by the laws of

nature themselves.

This is a striking example that the code of rules for inference

by induction, though perhaps metaphysical in some way, is

certainly not a priori, but subject to reactions from the know-

ledge which it has helped to create. For those rules which taught

the experimentalist how to obtain and improve the accuracy of

his findings contained to begin with certainly no hint that there

is a natural end to the process.

However, the idea ofunlimited improvement ofaccuracy need

not be given up yet. One had only to add the rule: make your

measurements at as low a temperature as possible. For Brownian

motion dies down with decreasing temperature.

Yet later developments in physics proved this rule also to be

ineffective, and a much more trenchant change in the code had

to be made.

But before dealing with this question we have to finish our

review of statistical methods in classical mechanics.

GENERAL KINETIC THEORY
Kinetic theory could only be regarded as complete if it

applied to matter in (visible) motion as well as to equilibrium.

But if you look through the literature you will find very Httle

—

a few simple cases. The most important of these, the theory of

gases, has been dealt with in some detail. Two others must be

mentioned : the theory of solids and of the Brownian motion.

Ideal sohds are crystal lattices or gigantic periodic molecules.
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But only for zero temperature are the atoms in regularly spaced

equilibrium positions; for higher temperatures they begin to

vibrate. As long as the amplitudes are small, the mutual forces

will be linear functions of them; then the vibrations can be

analysed into ‘normal modes’, each of which is a wave running

through the lattice with a definite frequency. These normal

modes represent a system of independent harmonic oscillations

to which Gibbs’s method of statistical mechanics can be applied

without any difficulty. If, however, the temperature rises, the

amplitudes of the vibrations increase and higher terms appear in

the interaction; the waves are scattering one another and are

therefore strongly damped. Hence there exists a kind of free

path for the transport ofenergy which can be used for explaining

conduction of heat in crystals (Debye). Similar considerations,

applied to the electrons in metallic crystals, are used for the

explanation of transport phenomena like electric and thermal

conduction in metals.

In the case ofBrownian motion, I have already mentioned that

Einstein calculated not only the mean density of a colloidal

solution, say, under gravity, but also the mean square displace-

ment of a single suspended particle in time (or, what amounts to

the same, the dispersion of a colloid by diffusion as a function

of time). The simplifying assumption which makes this possible

is that the mass ofthe colloidal particle is large compared with the

mass of the surrounding molecules, so that these impart only

small impulses. Similar considerations have been applied to

other fluctuation phenomena (see Appendix, 20).

A great number of more or less isolated examples of non-

equilibria have been treated by a semi-empirical method which

uses the notion of relaxation time. You find a very complete

account of such things related to solids and liquids in a book of

J. Frenkel, Kinetic Theory of Liquids, But you must not expect

to find in this work a systematic theory, based on a general idea,

nor will you find it in any other book.

My collaborator Dr. Green and I have tried to fill this gap,

and to develop the kinetic theory of matter in general. I hope

you will not mind if I indulge a little in the pleasure ofexplaining

6131 F
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the leading ideas. It will help the understanding ofthe interplay

of cause and chance in the laws of nature.

We have to remember the general principles laid down by

Gibbs which he, however, used only for the case of statistical

equilibrium.

An arbitrary piece ofmatter, fluid or solid, is, from the atomis-

tic standpoint, a mechanical system of particles (atoms, mole-

cules) defined by a Hamiltonian H. Its state is completely

determined if the initial values of coordinates and momenta are

given. Actually this is not the case; but there is a probability

(as yet unknown) f^(p,q)dpdq for the initial distribution. The

causal laws of motion demand that the distribution /(<,p, 5') at

a later time ^ is a solution of the Liouville equation (6.4) (p. 49)

(6.37)

namely that solution which for ^ = 0 becomes

(6.38)

Let us assume for simplicity that all molecules are equal

particles (point masses) with coordinates and velocities

We shall consider/ to be a function of these and

writef(t, x,5). Ifwewant to indicate thatafunction/depends onA

particles, we do not write all arguments, but simply /;^(1, or

shortly/^. As all the particles are physically indistinguishable, we
can assume all the functions/;^ to be symmetrical in the particles.

Now the physicist is not directly interested in a symmetric

solution of (6.37). He wants to know such things as the num-

ber density (number of particles per unit volume) ni{t, x) at a

given point x of space, or perhaps, in addition, the velocity dis-

tribution /i(^, X, 5), i.e. just those quantities which are familiar

from the kinetic theory of gases, depending on one particle only.

One has therefore to reduce the function/^^ forN particles step

by step to the function /^ of one particle.

This is done by integrating over the position and velocity of

one particle, say the last one, with the help of the integral

operator
(6.39)
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Iffg+i is given, we obtain/^ by applying the operator Xq+il it is,

however, convenient to add a normalizing factor and to write

{N-q)f, = Xa^iUi- (
6 -40)

The physical meaning of the operation is this: we give up the

pretence to know the whereabouts of one particle and declare

frankly our ignorance. By repeated application of the operation,

we obtain a chain of functions

/at-I) •••» /2 » fv (6.41)

to which one can add/o = 1
; /^ means the probabihty of finding

the system in a state where q particles have fixed positions (i.e.

lie in given elements). The normalization is such that

J A(<, x(». ?(«) = »,(<. X(W) (6.42)

is the number density; for one has

f
n,(f, x®) dxW = JJ

Adx(iW« = xi/i = (6-43)

where the last equahty follows from (6.40) for g' = 0 (with

/o=l).
Nowwe have to reduce the fundamental equation (6.37) stepby

step by repeatedly applying the operator x (see Appendix, 21).

Assuming that the atoms are acting on another with central

forces, being the potential energy between two of them, the

result of the reduction is a chain of equations of the form

% == (3 = 2 N), (6.44)

where

This quantity will be called the statistical term. What is the

advantage of this splitting up of the problem into the solution of

a chain of equations ? The first impression is that there is no

advantage at aU; for to determine /j you need to know but

contains

/

2 ,
and this again depends on/g, and so on, so that one

eventually arrives at which satisfies the original equation.

Yet this reasoning supposes the desire to get information about

every detail of the motion, and that is just what we do not want.
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We wish to obtain some observable and rather crude averages.

Starting from/i and climbing up to/2,/3,..., we can soon stop, as

the chaos increases with the number of particles, and replace the

rigorous connexion between /^ and/^+i by an approximate one,

according to the imperfection of observation.

Before explaining the apphcation ofthis 'method ofignorance’

to simple examples, I wish to mention that we have actually

found the chain of equations (6.44) in quite a different way,

starting with/^ and using the calculus of probabihty for events

not independent of one another (see Appendix, 22).

This derivation is less formal than the first one and illuminates

the physical meaning of the statistical term.

It would now be very attractive to show how from this general

formula (6.44) the mechanical and thermal laws for continuous

substances can be derived. But I have to restrict myself to a

few indications concerning the general 'method of ignorance’,

to which I have already alluded.

The first example is the theory of gases. We have seen that

this theory is based on Boltzmann’s equation (6.23)

= [^r,/(l)]+(7(l), (6.46)

where (7(1) is the collision integral (6.24)

;

Cil) = /
[/'(l)/'(2)-/(l)/(2)]|?,-^,| dhdl,. (6.47)

Now (6.46) has the same form as our general formula (6.44) for

g = 1, provided (7(1) can be identified with S^.

Green has shown that this is indeed the case, provided that the

molecular forces have a small range TqI then one can assume that

in the gaseous state the probabihty of finding more than two

particles in a distance smaller than Tq is neghgible. In other

words, one can exclude all except 'binary’ encounters. Two
particles outside the sphere of interaction can be regarded as

independent; hence one has there

A(1,2)=A(1)/i(2). (6.48)

This holds also, in virtue of LiouviUe’s theorem, if on the left-

hand side the positions and velocities refer to a point in th



GENERAL KINETIC THEORY 69

interior of the sphere of action while on the right-hand side the

values on its surface are used. With the help of this fact, the

integration in can be performed (see Appendix, 23), and

leads exactly to the expression (7(1), in which only the ‘boundary

values’ of the functions/(l) and/(2) on the surface of the sphere

of action appear.

Hence the whole kinetic theory of gases is contained as a

special case in our theory.

Concerning liquids, one must proceed in a different way,

because triple and higher coUisions cannot be handled with

elementary formulae. We have adopted a method suggested by
the American physicist Kirkwood. His formula is a generali-

zation of (6.48), namely

/3 (
1

,
2

,
3

)
= /2(2,3)A(3, !)/,(!, 2)

/i(l)/i(2)/i(3)
’ (6.49)

and may be interpreted in different ways, e.g. by saying that the

occurrences of three pairs of particles (2, 3), (3, 1), (1, 2) at given

positions and with given velocities are almost independent

events, because the mutual interactions decrease rapidly with

the distance.

Substituting /g from (6.49) in S2 ,
one obtains from (6.44),

(6.45) two integro-differential equations for/j and/g which form

a closed system and can be solved by suitable approximations.

(If then /g is calculated from the solution /i,/2 ,
with the help of

(6.49), the relation (6.40) for g = 3 is not necessarily satisfied;

this is the sacrifice of accuracy introduced by the Kirkwood

method.)

AU physical properties of a liquid of the kind discussed here

(particles with central forces) can be expressed in terms of

2), a function known to the experimenters in X-ray research

on liquids as the radial distribution function. The method

explained leads to explicit formulae for the equation of state

and the energy; it allows also a discussion of the singularity

which separates the gaseous and liquid states. But I cannot

enter into a discussion of details.

Concerning non-equilibria, one can obtain the differential
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equations for the mechanical and thermal flow in a rigorous way;

the result has, of course, the form of Cauchy’s equations (4.9)

for continuous media, yet with a stress tensor which can be

explicitly expressed in terms ofthe time derivatives ofthe strain

tensor (or the space derivative of the velocity) and the gradient

of temperature. In this way expressions for the coefficients of

viscosity and thermal conductivity are obtained. They differ

from the known formulae for gases by the great contribution of

the mutual forces. Yet again I cannot dwell on this subject

which would lead us far from the main topic of these lectures,

to which I propose now to return (see Appendix, 33).
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CHANCE AND ANTECEDENCE

What can we learn from all this about the general problem of

cause and chance ? The example of gases has already shown us

that the introduction of chance and probability into the laws of

motion removes the reversibility inherent in them; or, in other

words, it leads to a conception of time which has a definite

direction and satisfies the principle of antecedence in the

cause-effect relation.

The formal method consists in defining a certain quantity,

the entropy ,

S = -hi-, (7.1)

jfdpdq

and showing that it never decreases in time idSjdt ^ 0. In the

case of a gas, the function / was the distribution function of

one single molecule, a function of the point p, q of the phase

space of this molecule.

The same integral represents also the entropy of an arbitrary

system in statistical mechanics, if / is replaced by the

distribution function in the 2V-dimensional phase space; it

satisfies all equilibrium relations of ordinary thermodynamics.

In the case of a gas, the time derivative of 8 could be deter-

mined with the help of Boltzmann’s collision equation, and it

was found that always

(7.2)

I have stressed the point that this is not in contradiction to

the reversibility of mechanics; for this reversibility refers to a

distribution function of non-interacting molecules, satisfying

|=[^,/], (7.3)

while molecules colliding with one another satisfy

_ rrr n_i_/7 (7.4)
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where C is the collision integral. Irreversibility is therefore a

consequence of the explicit introduction of ignorance into the

fundamental laws.

Now the same considerations hold for any system. If we take

for / the function/^ of a closed system of N particles, (7.3) is

again satisfied, and if its solution is introduced into (7.1), it can

be easily shown that dS/dt — 0.

Irreversibility can be understood only by explicitly exempting

a part of the system from causality. One has to abandon the

condition that the system is closed, or that the positions and

velocities of all particles are under control. The remarkable

thing is that it suffices to assume one single particle beyond con-

trol. Then we have to do with a system of 1 particles, but

concentrate our interest only on N of them. The partition func-

tion of these JV particles satisfies the equation (6.44) for q = N:

% = [HM+Sm (
7 .5)

where is a certain integral over/^^^i given by (6.45) for q = N.

For a solution ofthis equation (7.5) the entropy is either constant

or increasing. This is of course a fortiori the case if the system

of N particles is coupled to more complicated systems out of

control (see Appendix, 24).

The increase of S continues until statistical equilibrium is

reached, and it can be shown that the final distribution is the

canonical one
= H(p,q) = E. (7.6)

This result is, in my opinion, the final answer of the age-old

question how the reversibility of classical mechanics and the

irreversibility of thermodynamics can be reconciled. The latter

is due to a deliberate renunciation of the demand that in prin-

ciple the fate of every single particle can be determined. You
must violate mechanics in order to obtain a result in obvious

contradiction to it. But one may say: this violation may be

necessary from practical reasons because one can neither observe

all particles nor solve the innumerable equations—^in reality,

however^ the world is reversible, and thermodynamics only a
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trick for obtaining probable, not certain, results. This is the

standpoint taken in many presentations of statistical mechanics.

It is difficult to contradict if one accepts the axiom that the

positions and velocities of all particles can, at least in principle,

be determined—but can this really be maintained? We have

seen that the Brownian motion sets a limit to all observations

even on a macroscopic scale. One needs a spirit who can do

things we could not even do with infinitely improved technical

means. Further, the idea of a completely closed system is also

almost fantastic.

I think that the statistical foundation of thermodynamics is

quite satisfactory even on the ground of classical mechanics.

But in fact, classical mechanics has turned out to be defective

just in the atomic domain where we have applied it. The whole

situation has therefore to be re-examined in the light ofquantum
mechanics.
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MATTER

MASS, ENERGY, AND RADIATION

In order not to lose sight ofmy main subject I have added to the

heading of each section of these lectures words like "cause’,

‘contiguity’, ‘antecedence’, ‘chance’. The one for the present

section, ‘matter’, seems to be an intruder. For classical philo-

sophy teaches that matter is a fundamental conception of a

specific kind, entirely different from cause, though on the same

level in the hierarchy of notions: another ‘category’ in Kant’s

terminology. This doctrine was generally accepted at the time

before the great discoveries were made of which I have now to

speak. It was the period when physics was governed by the

dualism ‘force and matter’, Kraft und Stoff (the title ofa popular

book by Buchner). In modern physics this duahty has become

vague, almost obsolete. The first steps in this direction have been

described in the preceding survey: the transition from Newton’s

distance forces to contact forces, first in mechanics, then in

electromagnetism, and finally for gravitation; in other words,

the victory of the idea of contiguity. If force is spreading in

‘empty space’ with finite velocity, space cannot be quite empty;

there must be something which carries the forces. So space is

filled with ether, a kind of substance akin to ordinary matter

in many respects, in which strains and stresses can be produced.

Though these contact forces obey different laws from those which

govern elasticity, they are stiU forces in an ether, something

different from the carrier. Yet this distinction vanishes more

and more. Relativity showed that the ether does not share with

ordinary matter the property of ‘localization’
:
you cannot say

‘here I am’ ; there is no physical way of identifying a point in the

ether, as you could recognize a point in running water by a

little mark, a particle of dust. Electric and magnetic stresses

are not something in the ether, they are ‘the ether’ . The question

of a carrier becomes meaningless.

However, this is a question of interpretation. Physicists are
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very broad-minded in this respect; they will continue using obso-

lete expressions like ether, and no harm is done. For them a

matter of terminology is not serious until a new quantitative

law is involved. That has happened here indeed. I refer to the

law connecting mass m, energy €, and the velocity of light c

(see Appendix, 25
), ^ ^

which, after having been found to hold in special cases, was

generally established by Einstein. His reasoning is based on the

existence of the pressure of light, demonstrated experimentally

and also derivable from Maxwell’s equations ofelectrodynamics.

If a body of mass M emits a well-defined quantity of light in a

parallel beam which carries the total electromagnetic energy e,

it suffers a recoil corresponding to the momentum e/c transferred.

It therefore moves in the opposite direction, and to avoid a clash

with the mechanical law that the centre of mass of a system

cannot be accelerated by an internal process, one has to ascribe

to the beam of light not only an energy c and momentum ejc but

also a mass c/c^, and to assume that the mass M of the emitting

body is reduced by the same amount m — e/c^.-j*

The theory of relativity renders this result quite natural. It

provides, moreover, an expression for the dependence of mass

on velocity; one has

where ttiq is called the rest-mass. Energy e and momentum p are

then given by
^ _ ^2, p ^ (8.3)

I need hardly to remind you how this result of ‘purest science’

has been lately confirmed by a terrifying, horrible, ‘technical’

application in New Mexico, Japan, and Bikini. There is no

doubt, matter and energy are the same. The old duality between

the force and the substance on which it acts, has to be aban-

doned, and hence also the original idea of force as the cause of

motion. We see how old notions are dissolved by new ex-

periences. It is this process which has led me to the abstract

t M. Bom, Atomic Physics (Blackie), 4th ed., 1948, Ch. III. 2, p. 62 ; A. VII,

p. 288. See Appendix, 25.
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definition of causality based only on the notion of physical

dependence, but transcending special theories which change

according to the experimental situation.

Returning to our immediate object, we learn from Einstein’s

law that the atomistic conception of matter is necessarily con-

nected with the atomistic conception of energy. In fact the

existence of quanta of energy was deduced by Planck from the

laws of heat radiation five years before Einstein published his

relation between mass and energy.

Planck’s discovery opened the first chapter in the history of

quantum theory, which corresponds to the years 1900 to 1913

and could be entitled 'Tracing the quantum by thermodynamical

and statistical methods’ . The next chapter deals with the period

1913-25 when spectroscopical and electronic methods were in

the foreground, while the last chapter describes the birth and

development of quantum mechanics.

I cannot possibly give an account of this long and tedious

development, but I shall pick out a few points which are not so

well known and hardly found in text-books, beginning with some

remarks on the thermo-statistical quantum hunt.

The problem which Planck solved was the determination of

the density of radiation p in equilibrium with matter of a given

temperature T as function of T and of the frequency v, so that

p(v, T) dv is the energy per unit volume in the frequency interval

dv. By purely thermodynamical methods several properties of

this function were known: the temperature dependence of the

total radiation
^
pdv = oT^ (law of Stefan and Boltzmann) and

the specification that pjv^ is only a function of the quotient vjT,'\

The problem remained to determine this function, and here

statistical methods had to be used.

One can proceed in two ways. Either one regards the radiation

as being in equilibrium with a set of atoms which in their inter-

action with radiation can be replaced by harmonic oscillators;

then the mean energy of these can be calculated in terms of the

radiation density and turns out to be proportional to it. This

was the method preferred by Planck. Or one regards the radia-

t Law of Wien; see Atomic Physics, Ch. VII. 1, p. 198; A. XXVII, p. 343.
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tion itself as a system of oscillators, each of these representing

the amphtude of a plane wave. This method was used by Ray-

leigh and later by Jeans. In both cases the relation between the

mean energy u(p) of the oscillators of frequency v and the radia-

tion density p is given byf

P = (8.4)

and it suffices to determine u.

This can be done with the help of the so-called equipartition

law of statistical mechanics. Suppose the Hamiltonian i? of a

system has the form

(8.5)

where | is any coordinate or momentum and H' contains all

the other coordinates and momenta but not Then the mean
value of the contribution to the energy of this variable ^ is (see

Appendix, 26) —
y. m
2 ’

(
8 .6)

independent of the constant a—whence the same for all variables

of that description.

Applied to a set of oscillators of frequency v, where

H = A(2,2+4,rVV). (8.7)

one obtains for the average energy

u = kT, (8.8)

hence, from (8.4), p
— kT. (8.9)

This is called the Rayleigh-Jeans radiation formula. It is a

rigorous consequence of classical statistical mechanics, but

nevertheless in obvious contradiction to facts. It does not even

lead to a finite total radiation, since p increases as with fre-

quency. The law is, however, not quite absurd as it agrees well

with measurements for small frequencies (long waves) or high

temperatures. At the other end of the spectrum, the observed

t See Atomic Physics, Ch. VII. 1, p. 201 ; A. XXVIII, p. 347.
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energy density decreases again, and Wien has proposed for this

region an experimental law which would correspond to the

assumption that in (8.4) the oscillator energy is of the form

u = (8.10)

This looks very much like a Boltzmann distribution. According

to Wien’s displacement law it holds for high values of the

quotient vjT, and both constants Uq and cq must be proportional

to v; but their meaning is obscure.

This was the situation which Planck encountered: two

limiting cases given by the formulae (8.8) and (8.10), the first

valid for large T, the second for small T, Planck set out to dis-

cover a bridging formula; the difficulty of this task can be visual-

ized by looking at the two mathematical expressions or the

corresponding graphs in Fig. 1. Planck decided that the energy

was a variable unsuited for interpolation, and he looked for

another one. He found it in the entropy S. I shall give here

his reasoning in a little different form (due to Einstein, 1905),

where the entropy does not appear explicitly but the formulae

of statistical mechanics are used. Starting from Boltzmann’s
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distribution law, according to which the probability of finding

a system in a state with energy c is proportional to where

j8 = IjkT, one can express the mean square fluctuation of the

energy ^2 _ (IZ-p _
in terms of the average energy € == u itself if the latter is given as

function of temperature or of (see Appendix, 20.10):

= (8 . 11 )

Now this function u{p) is known for the two limiting cases: T
large or jS small, and T small or jS large, from (8.8) and (8.10),

u = 1
for small jS,

\ Uq for large jS.

(8.12)

Hence one has

{S^ = du small j8;

"" = €(,M, large )S.

(8.13)

Now Planck argues like this: the two limiting cases will corre-

spond to the preponderance of two different causes, whatever

they may be. A well-known theorem of statistics says that the

mean square fluctuations due to independent causes are additive.

Let us assume that the condition ofindependence is here satisfied.

Hence, if both causes act simultaneously, we should have

(Alp = (8.14)

This is a differential equation for u, with the general solution

u = ^0

1
(8.15)

The constant of integration a must vanish in order to have the

limiting cases (8.15) all right. Wien’s displacement law, accord-

ing to which p/v® = Sttu/c^v depends only on Tjv, leads then to

€q = hv, where A is a constant, known as Planck’s constant.

The result is Planck’s formula for the mean oscillator energy

u = hv
(8.16)

from which the radiation density follows according to (8.9); a
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refined interpolation which turned out to be in so excellent agree-

ment with experiment that Planck looked for a deeper explana-

tion and discovered it in the assumption of energy quanta of

finite size Cq = If fhe energy is a multiple of Cq, the integral

(6.32) has to be replaced by the sum

z = y = -
n=0 1“ -/Sco’

(8.17)

and then the usual procedure outhned in section 6 leads at once

to the expression (8.16) for the oscillator energy u.

Planck believed that the discontinuity of energy was a pro-

perty ofthe atoms, represented by oscillators in their interaction

with radiation, which itself behaved quite normally. Seven

years later Einstein showed that indeed wherever oscillations

occur in atomic systems, their energy follows Planck’s formula

(8.16);! refer to his theory of specific heat of molecules and solids

which opened more than one new chapter of physics. But this

is outside the scope of these lectures.

f

Einstein had, however, arrived already in 1905 at the con-

clusion that radiation itself was not as innocent as Planck

assumed, that the quanta were an intrinsic property of radia-

tion and ought to be imagined to be a kind of particles flying

about. In text-books this revival ofNewton’s corpuscular theory

of hght is connected with Einstein’s explanation of the photo-

electric eflFect and similar phenomena where kinetic energy of

electrons is produced by light or vice versa. This is quite correct,

but not the whole story. For it was again a statistical argument

which led Einstein to the hypothesis of quanta of light, or

photons, as we say to-day.

He considered the two limiting cases (8.13) from a different

point of view. Suppose the wave theory of light is correct, then

heat radiation is a statistical mixture of harmonic waves of all

directions, frequencies, and amplitudes. Then one can deter-

mine the mean energy of the radiation and its fluctuation in a

given section of a large volume. This calculation has been per-

formed by the Dutch physicist, H. A. Lorentz, with the result

t See Atomic Physics, Ch. VII. 2, p. 207.
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that (Spp = for any frequency, or expressed in terms of the

equivalent oscillators, (Ae)^ = in agreement with the

Rayleigh-Jeans case (small jS, large T) in (8.13). Hence there

must be something else going on besides the waves, for which

(Ae)^ = €^u\ what can this be?

Suppose Planck’s quanta exist really in the radiation and let

n be their number per unit volume and unit frequency interval.

As each quantum has the energy Cq = hv, one has i = u =
and (Ae)^ = €§(A7i)^. Hence the fluctuation law in Wien’s case

(large jS, small T) of (8.13) can be written as

(A?i)2 = n, (8.18)

This is a well-known formula of statistics referring to the

following situation: a great number of objects are distributed at

random in a big volume and n is the number contained in a part.

Then one has just the relation (8.18) between the average n
and its mean square fluctuation (see Appendix, 20). So Einstein

was led to the conclusion that the Wien part of the fluctuation

of energy is accounted for by quanta behaving like independent

particles, and he corroborated it by taking into account, besides

the energy, also the momentum hvjc of the quantum and the

recoil of an atom produced by it. It was this result which en-

couraged him to look for experimental evidence and led him to

the well-known interpretation of the photo-electric effect as a

bombardment of photons which knock out electrons from the

metal transferring their energy to them.

Expressed in terms of photon numbers the combined fluctua-

tion law (8.14) reads

--S ="+”' = "(«+!)>
€o dp

with the general solution

n = 1

^a+^60— I
’ (8 .20 )

where a = 0 leads to the correct value for large T, But what if

a 9^: 0 ?

Every physicist glancing at the last formula will recognize

it as the so-called Bose-Einstein distribution law for an ideal
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gas of indistinguishable particles according to quantum theory.

It is most remarkable that at this early stage of quantum theory

Planck and Einstein have already hit on a result which was

rediscovered much later (Einstein again participating) (see

Appendix, 25, 32). In fact Planck’s interpolation can be inter-

preted in modern terms as the first and completely successful

attempt to bridge the gulf between the wave aspect and the

particle aspect ofa system ofequal and independent components

whatever they may be—photons or atoms.

I shall conclude this section by giving a short account of

another consideration of Einstein’s which belongs to a later

period of quantum theory, when Bohr’s theory of atoms was

already well established, namely the existence of stationary

states in the atoms which differ by finite amounts of energy

content. Suppose the atom can exist in a lower state 1 and a

higher state 2; transitions are possible by emission or absorp-

tion of a light quantum of energy cg—

=

eg, hence of frequency

V = On the other hand, according to Boltzmann’s law

the relative number of atoms in the two states will be

^ (8 .21 )

Now one can write (8.20), with a = 0, in the form

(n-f-l)c“^^® = n,

or, using (8.21), (8.22)

For this equation Einstein gave the following interpretation:

the left-hand side represents the number of quanta emitted per

unit of time from the fl'toms in the higher state, the right-

hand side those absorbed by the atoms in the lower state,

two processes which in equilibrium must of course cancel one

another.

The absorption is obviously proportional to the number of

atoms in the lower state, and to the number n of photons

present, i.e. to Concerning the emission the term JVg signifies

a spontaneous process, independent of the presence of radiation;

it corresponds to the well-known emission of electromagnetic
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waves by a vibrating system of charges. The other term nN^ is

a new phenomenon which was signalled the first time in this paper

of Einstein (later confirmed experimentally), namely a forced

or induced emission proportional to the number of photons

present.

If we denote the number of spontaneous emissions by AN^y

of induced emissions by of absorptions we
learn from (8.22) that the probability coefficients (probabilities

per unit time, per atom, and per Hght-quantum) are all equal:

^ = £12 = J521- (8.23)

This result had far-reaching consequences. The first is the exis-

tence ofa symmetric probability coefficient = -^21 transi-

tion between two states induced by radiation. This became one

of the clues for the discovery of the matrix form of quantum

mechanics.

The second point is seen if one considers, not equilibrium, but

a process in time; Einstein’s consideration leads at once to the

equation

dift dN^x

dt dt
(8 .24)

which is of the type used by the chemists for the calculation of

reaction velocities. One has, in their terminology, three com-

peting reactions, namely two diatomic ones and one monatomic

one. Now genuine monatomic reactions are rare in ordinary

chemistry, but abundant in nuclear chemistry; they were in

fact until recently the only known ones, namely the natural

radioactive disintegrations. If the radiation density is zero,

n = 0, one has

=
(
8 .25 )

which is exactly the elementary law of radioactive decay,

according to Rutherford and Soddy . It expresses the assumption

that the disintegrations are purely accidental and completely

independent of one another.

Thus Einstein’s interpretation means the abandonment of

causal description and the introduction of the laws of chance

for the interaction of matter and radiation.
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ELECTRONS AND QUANTA
Although my programme takes me through the whole history

of physics, I am well aware that it is a very one-sided account of

what really has happened. It will not have escaped you that I

beheve progress in physics essentially due to the inductive

method (ofwhich I hope to say a little more later), yet the experi-

mentalist may rightly complain that his efforts and achieve-

ments are hardly mentioned. Yet as I am concerned with the

development of ideas and conceptions, I may be permitted

to take the skill and inventive genius of the experimenters for

granted and to use their results for my purpose without detailed

acknowledgement.

The period about 1900, when quantum theory sprang from

the investigations of radiation, was also full of experimental

discoveries: radioactivity, X-rays, and the electron, are the

major ones.

In regard to the role of chance in physics, radioactivity was of

special importance. As I said before, the law of decay is the

expression of independent accidental events. Moreover, the

decay constant turned out to be perfectly insensitive to aU

physical influences. There might be, of course, some internal

parameters of the atom which determine when it will explode.

Yet the situation is different from that in gas theory: there we
know the internal parameters, or believe we know them, they

are supposed to be ordinary coordinates and momenta; what

we do not know are their actual values at any time, and we are

compelled to take refuge in statistics because of this lack of

detailed knowledge. In radioactivity, on the other hand, nobody

had an idea what these parameters might be, their nature itself

was unknown. However, one might have kindled the hope that

this question would be solved and radioactive statistics reduced

to ordinary statistical mechanics. In fact, just the opposite has

happened.

Radioactivity is also important for our problem because it

provided the means of investigating the internal structure of the

atom. You know how Rutherford used a-particles as projectiles

to penetrate into the interior of the atom, and found the nucleus.
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This result, together with J. J. Thomson’s discovery of the elec-

tron, led to the planetary model of the atom: a number of elec-

trons surrounding the nucleus, bound to it by electric forces. The

fundamental difficulty of this model is its mechanical instability.

As long as nothing was known about the forces which keep the

elementary particles in an atom together one could assume a

law of force which allowed stable equilibrium states. An in-

genious model of this kind is due to J. J. Thomson. But now one

knew that the forces were electrostatic ones, following Coulomb’s

law, and these could never guarantee the extraordinary stability

of the actual atoms which survive billions of collisions without

any change of structure. Bohr connected this difficulty with the

facts of spectroscopy, and the result was his well-known model

of the atom consisting of ‘quantized’ electronic orbits.

Mentioning spectroscopy, I feel again sadly how I have to

skip over great fields of research with a few words.

The discovery ofsimple laws in line spectra was in fact a great

achievement. Still more important than numerical formulae,

like the one discovered by the Swiss schoolmaster Balmer for

the hydrogen spectrum, was the rule found by Ritz (also a

Swiss, who unfortunately died quite young), the so-called com-

bination principle; it says that the frequencies of the spectral

lines of gases can be obtained by forming differences of a single

row of quantities which are called terms:

Vnm = (8.26)

though not all ofthese differences appear as lines in the spectrum

.

Balmer’s formula for hydrogen is a special case where

namely
(m = 3,4,...).

The formula (8.26) gave Bohr the clue to the application of

quantum theory. Multiplying it by Planck’s constant h he

interpreted it as the energy difference between any

two stationary states having the energies = hT^ (n = 1,2,...).

This interpretation is a sweeping generalization of Planck’s

original conception of discrete energy-levels of oscillators. It

explained at once the stability of atoms against impacts with an
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energy smaller than a certain threshold, the difference between

emission and absorption spectra (the latter being of the form

where 1 means the ground state), and was in

detail confirmed by the well-known experiments of Franck and

Hertz (excitation of spectra by electron bombardment).

However, I cannot continue to describe the whole develop-

ment of quantum theory because that would mean writing an

encyclopaedia of physics of the last thirty-five years. I have

given this short account ofthe initial period because it is fashion-

able to-day to regard physics as the product of pure reason.

Now I am not so imreasonable as to say that physics could

proceed by experiment only, without some hard thinking, nor

do I deny that the forming of new concepts is guided to some

degree by general philosophical principles. But I know from my
own experience, and I could call on Heisenberg for confirmation,

that the laws of quantum mechanics were found by a slow and

tedious process ofinterpreting experimental results. I shall try to

describethemainstepsofthis process in the shortest possible way.

Yet it must be remembered that these steps do not form a

straight staircase upwards, but a tangle of interconnected alleys.

However, I must begin somewhere.

There was first the question whether the stationary states are

certain selected mechanical orbits, and if so, which. Proceeding

from example to example (oscillator, rotator, hydrogen atom),

‘quantum conditions’ were found (Bohr, Wilson, Sommerfeld)

which for every periodic coordinate q of the motion can be

expressed in the form

I
^
pdq == hUy (8,27)

wherep is the momentum corresponding to q and the integration

extended over a period. The most convincing theoretical

argument for choosing these integrals I was given by Ehrenfest,

who showed that if the system is subject to a slow external per-

turbation, I is an invariant and therefore well suited to be

equated to a discontinuous ‘Jumping’ quantity Jin,

Among these ‘adiabatic invariants’ I there is in particular the

angular momentum of a rotating system and its component in a
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given direction; ifboth are to be integer multiples ofh, the strange

conclusion is obtained that an atom could not exist in all orienta-

tions but only in a selected finite set. This was confirmed by

Stem and Gerlach’s celebrated experiment (deflecting an

atomic beam in an inhomogeneous magnetic field). I am proud

that this work was done in my department in Frankfort-on

-

Main. There is hardly any other effect which demonstrates the

deviations from classical mechanics in so striking a manner.

A signpost for further progress was Bohr’s correspondence

principle. It says that, though ordinary mechanics does not

apply to atomic processes, we must expect that it holds at least

approximately for large quantum numbers. This was not so

much philosophy as common sense. Yet in the hands of Bohr

and his school it yielded a rich harvest of results, beginning with

the calculation of the constant R in the Balmer formula.f The

mysterious laws of spectroscopy were reduced to a few general

rules about the energy-levels and the transitions between them.

The most important of these rules was Pauli’s exclusion prin-

ciple, derived from a careful discussion of simple spectra; it says

that two or more electrons are never in the same quantum state,

described by fixed values of the quantum numbers (8.27)

belonging to all periods, including the electronic spin (Uhlenbeck

and Goudsmit). With the help of these simple principles the

periodic system of the elements could be explained in terms of

electronic states. But all these great achievements of Bohr’s

theory are outside the scope of our present interest. I have,

however, to mention Bohr’s considerations about the correspon-

dence between the amplitudes of the harmonic components of a

mechanical orbit and the intensity of certain spectral lines.

Consider an atom in the quantum state n with energy and

suppose the orbit can be, for large n, approximately described

by giving the coordinates q as functions of time. As these will

be periodic, one can represent g as a harmonic (Fourier) series,

of the type

q{t) = £ a^(ra)cos[2irj'(»)(mi+S„)], (8.28)

t See Atomic Physics, Ch. V. 1, p. 98 ; A. XIV, p. 300.
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where the fundamental frequency v{n) and the amplitudes

a^{n) depend on the number n ofthe orbit considered. In reality,

the frequencies observed are not v{n), 2v{n)y 3v(n),... but

^nm ~ ^m)>

and what about the amplitudes ? It was clear that the squares

|a,y^(7i)|2should correspond in some way to the transition prob-

abilities B^fn = ^mn introduced by Einstein in his derivation

of Planck’s radiation law (8.16). But how could the mth over-

tone of the nth orbit be associated with the symmetric relation

between two states m,n?
This was the central problem of quantum physics in the years

between 1913 and 1925. In particular there arose a great interest

in measuring intensities of spectral lines, with the help of newly-

invented recording micro-photometers. Simple laws for the

intensities of the component lines of multiplets were discovered

(Omstein, Moll), and presented in quadratic tables which look

so much like matrices that it is hard to understand why this

association of ideas did not happen in some brain.

It did not happen because the mind of the physicist was still

working on classical lines, and it needed a special effort to get

rid of this bias. One had to give up the idea of a coordinate

being a function of time, represented by a Fourier series like

(8.28); one had to omit the summation in this formula and to

take the set of unconnected terms as representative of the

coordinate. Then it became possible to replace the Fourier

amplitudes a^{n) by quantum amplitudes a(m,n) with two

equivalent indices m, n, and to generalize the multiplication law

for Fourier-coefficients into that for matricesf

Heisenberg justified the rejection of traditional concepts by a

general methodological principle: a satisfactory theory should

use no quantities which do not correspond to anything ob-

servable. The classical frequencies inv{n) and the whole idea of

orbits have this doubtful character. Therefore one should

f See Atomic PhysicSf Ch. V. 3, p. 123; A. XV, p. 305.
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eliminate them from the theory and introduce instead the

quantum frequencies v^m = while the orbits should

be completely abandoned.

This suggestion of Heisenberg has been much admired as the

root of the success of quantum mechanics. Attempts have been

made to use it as a guide in overcoming the difficulties which

have meanwhile turned up in physics (in the application of

quantum methods to field theories and ultimate particles); yet

with little success. Now quantum mechanics itself is not free

from unobservable quantities. (The wave-function of Schr5-

dinger, for instance, is not observable, only the square of its

modulus.) To rid a theory of all traces of such redundant con-

cepts would lead to unbearable clumsiness. I think, though

there is much to be said for cleaning a theory in the way recom-

mended by Heisenberg, the success depends entirely on scientific

experience, intuition, and tact.

The essence of the new quantum mechanics is the representa-

tion of physical quantities by matrices, i.e. by mathematical

entities which can be added and multiplied according to well-

known rules just like simple numbers, with the only difference

that the product is non-commutative. For instance, the quan-

tum conditions (8.27) can be transcribed as the commutation law

qp~pq = ih = (8-30)

The Hamiltonian form of mechanics can be preserved by re-

placing all quantities by the corresponding matrices. In par-

ticular the determination of stationary states can be reduced

to finding matrices q,p for which the Hamiltonian H{p^q)

as a matrix has only diagonal elements which are then the energy-

levels of the states. In order to obtain the connexion with

Planck’s theory of radiation, the squares \q{m,n)\^ have to be

interpreted as Einstein’s coefficients In this way a few

simple examples could be satisfactorily treated. But matrix

mechanics applies obviously only to closed systems with discrete

energy-levels, not to free particles and collision problems.

This restriction was removed by SchrOdinger’s wave mechan-

ics which sprang quite independently from an idea of de Broglie
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about the application of quantum theory to free particles. It is

widely held that de Broglie’s work is a striking example of the

power of the human mind to find natural laws by pure reason,

without recourse to observation. I have not taken part in the

beginnings of wave mechanics, as I have in matrix mechanics,

and cannot speak therefore from my own experience. Yet I

think that not a single step would have been possible if some

necessary foothold in facts had been missing. To deny this

would mean to maintain that Planck’s discovery of the quantum

and Emstein’s theory of relativity were products of pure think-

ing. They were interpretations of facts of observation, solutions

of riddles given by Nature—difficult riddles indeed, which only

great thinkers could solve.

De Broglie observed that in relativity the energy € ofa particle

is not a scalar, but the fourth component of a vector in space-

time, whose other components represent the momentum p; on

the other hand, the frequency v of a plane harmonic wave is also

the fourth component of a space-time vector, whose other

components represent the wave vector k (having the direction

of the wave normal and the length A”*^, where A is the wave-

length). Now if Planck postulates that € = hv, one is compelled

to assume also p = Ak. For light waves where Ay = c, this had

already been done by Einstein, who spoke of photons behaving

like darts with the momentum p == e/c = hvic, De Broglie

applied it to electrons where the relation between e and p is

more complicated, namely obtained from (8.3) by eliminating

the velocity v: / x 2

/fj (8 31)

If a particle (€,p) is always accompanied by a wave (v, k) the

phase velocity of the wave would be (using € = mc^, p = mv)

vA = vjk = e/p = c^/v ^ c, (8.32)

apparently an impossible result, as the principle of relativity

excludes velocities larger than that of light. But de Broglie

was not deterred by this; he observed that the prohibition of

velocities larger than c refers only to such motions which can be

used for sending time-signals. That is impossible by means
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of a monochromatic wave. For a signal one must have a small

group ofwaves, the velocity ofwhich can be obtained, according

to Rayleigh, by differentiating frequency with respect to wave

number. Thus, from (8.31) and (8.32),

f

dv ^ de pc^

dk dp €
(8.33)

a most satisfactory result which completely justifies the formal

connexion of particles and waves, though the physical meaning

of this connexion was still mysterious.

This reasoning is indeed a stroke of genius, yet not a triumph

of a priori principles, but of an extraordinary capacity for com-

bining and unifying remote subjects.

I should say the same about thework ofSchr5dinger and Dirac,

but you could better ask them directly what they think about the

roots oftheir discoveries. I shall not describe them here in detail,

but indicate some threads to other facts or theories. SchrOdinger

says that he was stimulated by a remark of de Broglie that any

periodic motion of an electron must correspond to a whole

number of waves of the corresponding wave motion. This led

him to his wave equation whose eigenvalues are the energy-

levels ofstationary states. He was further guided by the analogy

of mechanics and optics known from Hamilton’s investigations;

the relation of wave mechanics to ordinary mechanics is the

same as that of undulating optics to geometrical optics. Then,

looking out for a connexion of wave mechanics with matrix

mechanics, Schr5dinger recognized as the essential feature of a

matrix that it represents a linear operator acting on a vector

(one-column matrix), and came in this way to his operator cal-

culus (see Appendix, 27) ;
ifa coordinate q is taken as an ordinary

variable and the corresponding momentum as the operator

the commutation law (8.30) becomes a trivial identity. Apply-

ing the theory of sets of ortho-normal functions, he could then

establish the exact relation between matrix and wave mechanics.

f See Atomic Physics, Ch. IV. 5, p. 84; A. XI, p. 295.
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It is most remarkable that the whole story has been developed

by Dirac from Heisenberg’s first idea by an independent and

formally more general method based on the abstract concept of

non-commuting quantities (g-numbers).

The growth of quantum mechanics out of three independent

roots uniting to a single trunk is strong evidence for the inevita-

bility of its concepts in view of the experimental situation.

From the standpoint of these lectures on cause and chance it

is not the formalism ofquantum mechanics but its interpretation

which is of importance. Yet the formalism came first, and was

well secured before it became clear what it really meant: nothing

more or less than a complete turning away from the predomi-

nance of cause (in the traditional sense, meaning essentially

determinism) to the predominance of chance.

This revolution ofoutlook goes back to a tentative interpreta-

tion which Einstein gave of the coexistence of light waves and

photons. He spoke of the waves being a ‘ghost field’ which has

no ordinary physical meaning but whose intensity determines

the probability of the appearance of photons. This idea could be

transferred to the relation of electrons (and of material particles

in general) t<fde Broglie’s waves. With the help of SchrOdinger’s

wave equation, the scattering ofparticles by obstacles, the excita-

tion laws of atoms under electron bombardment, and other

similar phenomena could be calculated with results which con-

firmed the assumption.

I shall now describe the present situation of the theory in a

formulation due to Dirac which is well adapted to comparing the

new statistical physics with the old deterministic one.
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In quantum mechanics physical quantities or observables are

not represented by ordinary variables, but by S5nnbols which

have no numerical values but determine the possible values of

the observable in a definite way to be described presently. These

symbols can be added and multiplied with the proviso that

multiplication is non-commutative: AB is in general different

from BA. I cannot deal with the most general aspect of this

symbolic calculus, but shall consider a special representation,

namely that where the coordinates of the particles are

regarded as ordinary numbers. Then a definite state of a system

is defined by a function an observable A can be

represented by a linear operator: Aifj(q) means a new function

^(g), the result of operating with A on If this result is, apart

from a factor, identical with 0,

Aifj = aijj, (^*1)

ip is called an eigenfunction ofA and the constant a an eigenvalue.

The whole set of eigenvalues is characteristic for the operator

A and represents the possible numerical values ofthe observable,

which may be continuous or discontinuous.

The coordinates q themselves can be considered to be opera-

tors, namely multiplication operators: q^ operating on \p

means multiplying ip by q^. Operators whose eigenvalues are

all real numbers are called reaT^ipr Tffermitian’) operators. It

is clear that aU pTiysical quantities have to be represented by real

operators, as the eigenvalues are supposed to represent the pos-

sible results of measuring a physical quantity. One can easily

see that not only the multiplication operators q^ but also the

fh d
momenta Pat

= -^ are real. But for the formal argument one

can also use complex operators, of the form C = A^-iB (where

i = V— 1), and its conjugate C* = A—iB; then CC* can be
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shown to be a real operator with only positive (or zero) eigen-

values.

If two observables are represented by non-commuting opera-

tors, A and B, their eigenfunctions are not all identical; if u is

an eigenvalue ofA belonging to such an eigenfunction, there is

no state of the system for which a measurement can result in

finding simultaneously for A and B sharp numerical values a

and b.

The theory cannot therefore in general predict definite

values of all physical properties, but only probability laws.

The same experiment, repeated under identical and controllable

conditions, may result in finding for a quantity A so many
times ai, so many times Ug, etc., and for B in the same way
or 62 J ©tc. But the average of repeated measurements must be

predictable. Whatever the rule for constructing the number
which represents the average A of the measurements of -4, it

must, by common sense, have the properties thatA+B = A -{-B

and ^ = cA, if c is any number.

From this alone there follows an important result. Consider

apart from the averages A, B of two operators Ay B also their

mean square deviations, or the ‘spreadings’ ofthe measurements,

SA = 4(A-In 8B - 4(B-S)^}y (9.2)

then by a simple algebraic reasoning (see Appendix, 28), which

uses nothing other than the fact stated above that CC* has no

negative eigenvalues, hence 00* ^ 0
,
it is found that

(9.3)

where {A,B'\ = ^{AB—BA) (9.4)
tfl

is the so-called ‘commutator’ of the two operators Ay B, If this

is specially applied to a coordinate and its momentum, A = p,

JS = g, one has [g,p] = 1
,
therefore

8p.8? > (9.6)

This is Heisenberg’s celebrated uncertainty principle which is
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a quantitative expression for the effect of non-commutation on

measurements, but independent of the exact definition of aver-

ages. It shows how a narrowing of the range for the measured

g-values widens the range for The same holds, according to

(9.3), for any two non-commuting observables with the differ-

ence that the ‘uncertainty’ depends on the mean of the conHnu-

tal^^
These general considerations are, so to speak, the kinematical

part of quantum mechanics. Now we turn to the dynamical

part.

Just as in classical mechanics, the d3mamical behaviour of a

system of particles is described by a Hamiltonian

which is a (differential) operator. It is usually just taken over

from classical mechanics (where, if necessary, products like pq
have to be ‘symmetrized’ into i(pq+gp))- In Dirac’s relativistic

theory ofthe electron there are, apart from the space coordinates,

observables representing the spin (and similar quantities in

meson theory); they lead to no fundamental difiiculty and will

not be considered here.

Yet one remark about the Hamiltonian H has to be made,

bearing on our general theme of cause and chance: H contains

in the potential energy (and in corresponding electromagnetic

interaction terms) the last vestiges of Newton’s conception of

force, or, using the traditional expression, of causation. We
have to remember this point later.

In classical mechanics we have used a formulation of the laws

ofmotion which applies just as well to a simple system, where all

details of the motion are of interest, as to a system of numerous

particles, where only statistical results are desired (and possible).

A function f(t,p, q) of time and of all coordinates and momenta
was considered; if p, q change with time according to the equa-

tions of motion, the total change of/ is given by
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where [H,f] is the Poisson bracket

^k^Pk ^Pk
(9.7)

One recovers the canonical equations by taking for /
simply qj^ or respectively. On the other hand, if one puts

dfidt = 0, any solution of this equation is an integral of the

equations of motion, and from a sufficient number of such

integrals fkiUp^q) = Cj^ one can obtain the complete solution

giving all p, q as fimctions of t.

But if this is not required, the same equation is also the means

for obtaining statistical information in terms of a solution /,

called the ‘distribution function’, as I have described in detail.

/ is that integral of

I = {B,ll (9.8)

which for ^ 0 goes over into a given initial distributionf^ip, q).

If, in particular, this latter function vanishes except in the

neighbourhood ofa given pointPo, q^ in phase space, or, in Dirac’s

notation, if/o = 8(i?— back to the case of

complete knowledge, q^ and p^ being the initial values oiq and p.

This procedure cannot be transferred without alteration to

quantum mechanics for the simple reason that p and q cannot

be simultaneously given fixed values. The uncertainty relation

(9.5) forbids the prescribing of sharp initial values for all p and q.

Hence the first part of the programme, namely a complete

knowledge ofthe motion in the same sense as in classical mechan-

ics, breaks down right from the beginning. Yet the second part,

statistical prediction, remains possible. Following Dirac, we
ask which quantities have to replace the Poisson brackets (9.7)

in quantum theory, where all quantities are in general non-

commuting. These brackets [a,j3] have a number of algebraic

properties; the most important of them being

If one postulates that these shall hold also for non-commuting

quantities a and provided the order of factors is always
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preserved (a^ it is in (9.9)), then it can be shown (Appendix, 29 )

that [oc,p] is exactly the commutator as defined by (9.4).

Now one has to replace the function / in (9.8) by a time-

dependent operator p, called the statistical operator, and to

determine p from the equation (formally identical with (9.8)):

^ = (9.10)

with suitable initial conditions. To express these in a simple

way it is convenient to represent all operators by matrices in

the g-space; A operating on a function tp(q) is defined by

A,l.{q) ^ j A{q,q'mq') dq' (9.11)

{q stands for all coordinates ai^d q' for another set of

values q[yq2,—)y where A{q,q') is called the matrix represent-

ing A.

The product AB i& represented by the matrix

-A.B(q,q') = J
A{q,q")B(q",q’) dq". (9.12)

If now p and H are taken as such matrices, where the elements

of p depend also on time, (9.10) is a differential equation for

p(t,q,q'), and the initial conditions are simply

p(0,q,q') = Poiq.q'), (9.13)

where Pq is a given function of the two sets of variables.

The number of vector arguments in p for a system ofN par-

ticles is 2N, exactly as in the case of classical theory in the func-

tion f(p,q)- But while the meaning of / depending on p,q is

obvious, that of p depending on two sets g, g' is not, except in

one case, namely when the two sets are identical, g = g'; then

the function
p{ty<ly9) = n{t,q) (9.14)

is the number density, corresponding to the classical

I f{t,q,I>) dp = n(t,q).

Quite generally, the classical operation ofintegrating over the ^’s

is replaced by the simpler operation of equating the two sets

ofg’s, g = g', or in matrix language, taking the diagonal elements

of p.

6131 „
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The average of an observable A for a configuration q must be

a real numberA formed from p andA so that nA is Hnear in both

operators. The simplest expression of this kind is

nl = Up^+Ap\^^., (9.15)

and this gives, in fact, all results of quantum mechanics usually

obtained with the help of the wave function. For instance, the

statistical matrix describing a stationary state where A has a

sharp value a, belonging to the eigenfunction \}i(a,q), is

P = ?
')• (9. 16)

Then, from the definition (9.12) it follows easily that for this p
and any real operator A one has

Ap = pA — apy (9.17)

hence for q = q'y with (9.14),

n{ayq) = |0(a,g)|2, J = a. (9.18)

Thus we have obtained the usual assumption that |0(a,g)|^

is the ‘probability’ (if normalized to 1) or ‘number density’

(if normalized to N) at the point q for the state a. (It must,

however, be noted that for systems of numerous particles, hke

liquids in motion, otherways ofaveraging are useful, for instance

for the square of a momentum instead of ~ i(pP^-\~P^p)q-^Q'

the expression i(pp^+p^p+^ppp)q^q'y which, however, for uni-

form conditions coincides with the former.)

Let us consider the general stationary case where p is inde-

pendent of time and therefore satisfies

[iy,/)]-0. (9.19)

Any solution of this equation, i.e. any quantity A which com-

mutes with Hy is called an integral of the motion, in analogy to

the corresponding classical conception. H itself is, of course, an

integral. All integrals Aj, Ag,—? have different eigenvalues

Aj, Ag,..., for one and the same eigenfunction ^(A^, Ag,...;

or shortly ^(A, q)

:

Ai^ = Ai^, A20 = A2^, ... . (9.20)

p can be taken as any function of the A’s; its matrix representa-

tion is given by

p{q>q') = IP{m^.q)riKq'). (9.21)
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from which one obtains, with (9.18),

n(q) = p(q.q) = I P(A)|iA(A, g)!^ = J mMKq). (9.22)
A A

This shows that the arbitrary coefficient P(A) is the probability|

of finding the system in the stationary state A.

Dynamical problems arise in a somewhat different way from

those in classical theory. There it has a definite meaning to

speak about the motion of particles in a closed system, for

instance of the orbit of Jupiter in the planetary system. In

quantum theory a closed system settles down in a definite

stationary state, or a mixture of such states as given by (9.21).

But then nothing is changing in time; one cannot even make an

observation without interfering with the state of the system.

In classical physics it is supposed that we have to do with an

objective and always observable situation; the process ofmeasur-

ing is assumed to have no influence on the object of observation.

I have, however, drawn your attention to the point that even

in classical physics this postulate is practically never fulfilled

because of the Brownian motion which affects the instruments.

We are therefore quite prepared to find that the assumption of

‘harmless’ observations is impossible.

The most general way of formulating a dynamical problem is

to split the Hamiltonian in two parts

H = Ho+V, (9.23)

where describes what is of interest while V is of minor impor-

tance, a so-called perturbation. V may also include external

influences and depend explicitly on the time. This partition is,

of course, arbitrary to a high degree; but it corresponds to the

actual situation. If a water molecule HgO is assembled from its

atoms, one can either ask what the stationary states ofthe whole

system are, or one can consider the parts Hg and O and ask how
the states of the hydrogen molecule Hg are changed by the

approaching oxygen atom, or one can ask the same question

for the HO radical and theH atom. The latter two are dynamical

problems.

Dynamical problems in quantum theory therefore, in contrast

to thosein classical theory, cannot bedefinedwithouta subjective,
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more or less arbitrary decision about what you are interested

in. In other words, quantum mechanics does not describe an

objective state in an independent external world, but the aspect

of this world gained by considering it from a certain subjective

standpoint, or with certain experimental means and arrange-

ments. This statement has produced much controversy, and

though it is generally accepted by the present generation of

physicists it has been decidedly rejected by just those two men
who have done more for the creation of quantum physics than

anybody else, Planck and Einstein. Yet, with all respect, I

cannot agree with them. In fact, the assumption of absolute

observabihty which is the root of the classical concepts seems to

me only to exist in imagination, as a postulate which cannot be

satisfied in reality.

Assuming the partition (9.23) one has to describe the system in

terms of the integrals of motion A^, Ag,.** of which are, how-

ever, not integrals of motion ofH. All operators are then to be

expressed as matrices in the eigenvalues A (A^, Ag,...) of Aj, Ag,...;

for instance, the statistical operator p by the matrix p(t\ A, A'),

The diagonal elements of this matrix

P(t;X)=: p(t;KX) (9.24)

represent the probabifity of a state A at time t, and they go over

for ^ = 0 into the coefficients P(A) which appear in the expansion

(9.21) and represent the initial probabilities. The function

p(t; A, A') can be determined from the differential equation (9.10)

by a method of successive approximations. My collaborator,

Green, has even found an elegant formula representing the com-

plete solution. To a second approximation one finds

P{t,X) = P(A)+|; J(A,A'){P(A')-P(A)}+...; (9.26)

the coefficients are given by

.^(A,A')
ft*

t 2

(9.26)

10

where E is the energy of the unperturbed the state A,

E' that in the state A' (see Appendix, 30).
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Now equation (9.25) has precisely the form ofthe laws ofradio-

active decay, or of a set of competing mono-molecular reactions.

The matrix J(A,A') obviously represents the probability of a

transition or jump from the state A to the state A'. This inter-

pretation becomes still more evident if one assumes that the

A-values are practically continuous, as would be the case if the

system allowed particles to fly freely about (for instance in radio-

activity one has to take account of the emitted a-particles; in the

theory of optical properties of an atom of the photons emitted

and absorbed). If external influences are excluded, so that V
does not depend on time, the integral (9.26) can be worked out

with the result that J becomes proportional to the time

J(A,A')=i(A,A')^, (9.27)

where j(A,A') = ^ |F(A,A')|=*8(^-^?'). (9.28)
n

The last factor 8(E—E') says that j(A, A') differs from zero for

two states A and A' only if their energy is equal. j'(A, A') is

obviously the transition probabihty per unit time, precisely

the quantity used in radioactivity.

By applying the formula (9.25) to the case of the interaction

ofan atom with an electromagnetic field one obtains the formula

(8.24) which was used by Einstein in his derivation of Planck’s

radiation law. There are innumerable similar applications, such

as the calculation of the effective cross-sections of various kinds

of collision processes, which have provided ample confirmation

of the formula (9.25).

INDETERMINISTIC PHYSICS

There is no doubt that the formalism of quantum mechanics

and its statistical interpretation are extremely successful in

ordering and predicting physical experiences. But can our

dfesire crf.understanding, our wish to explain things, be satisfied

by a theor3^'^^^ch is frankly and shamelessly statistical and

indeterministic r^an we be content with accepting chance, not

cause, as the supr^e law of the physical world?

To this last questlbpn I answer that not causality, properly

understood, is eliminarhd. but only a traditional interpretation
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of it, consisting in its identification with determinism. I have

taken pains to show that these two concepts are not identical.

Causality in my definition is the postulate that one physical

situation depends on the other, and causal research means the

discovery of such dependence. This is still true in quantum
physics, though the objects of observation for which a depen-

dence is claimed are different: they are the probabilities of

elementary events, not those single events themselves.

In fact, the statistical matrix p, from which these probabilities

are derived, satisfied a differential equation which is essentially

of the same type as the classical field equations for elastic or

electromagnetic waves. For instance, if one multiplies the

eigenfunction ip(q) of the Hamiltonian H, H\j) — Eifs, by
the new function satisfies

= (9.29)
1/ ot

For a free particle, whereH = (Vx~\~Vy-\-pVl

goes over into the wave equation

2mi d<f>im = Ac^.

2m
A, (9.29)

(9.30)

Although here only the first derivative with respect to time

appears, it does not differ essentially from the ordinary wave

equation ^where the left-hand side is
—^j

. One must remember

that only has a physical meaning (as a probability),

where satisfies the conjugate complex equation

2mi d<f»*

'T"~W
= A<^*.

For this pair ofequations a change in the time direction —t)

can be compensated by exchanging ^ and which has no in-

fluence on

The same holds in the general case (9.29), and we see that the

jdifferential equations of the wave function share the property

of all classical field equations that the principle of antecedence
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is violated: there is no distinction between past and future for

the spreading of the probability density. On the other hand, the

principle of contiguity is obviously satisfied.

The differential equation itself is constructed in a way very

similar to the classical equations of motion. It contains in the

potential energy, which is part of the Hamiltonian, the classical

idea of force, or in other words, the Newtonian quantitative

expression for causation. If, for instance, particles are acting

on one another with a Coulomb force (as the nucleus and the

electrons in an atom), there appears inH the same timeless action

over finite distance as in Newtonian mechanics. Yet one has the

feeling that these vestiges of classical causality are provisional

and will be replaced in a future theory by something more satis-

factory; in fact, the difficulties which the application of quantum
mechanics to elementary particles encounters are connected with

the interaction terms in the Hamiltonian; they are obviously still

too ‘classicaF. But these questions are outside the scope of my
lectures.

We have the paradoxical situation that observable events obey

laws of chance, but that the probabihty for these events itself

spreads according to laws which are in aU essential features

causal laws.

Here the question of reality cannot be avoided. What really

are those particles which, as it is often said, can just as well

appear as waves ? It would lead me far from my subject to discuss

this very difficult problem. I think that the concept of reality is

too much connected with emotions to allow a generally accept-

able definition. For most people the real things are those things

which are important for them. The reahty of an artist or a poet

is not comparable with that of a saint or prophet, nor with that

of a business man or administrator, nor with that of the natural

philosopher or scientist. So let me cling to the latter kind of

special reality, which can be described in fairly precise terms.

It presupposes that our sense impressions are not a permanent

hallucination, but the indications of, or signals from, an external

world which exists independently of us. Although these signals

change and move in a most bewildering way, we are aware of
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objects with invariant properties. The set of these invariants of

our sense impressions is the physical reality which our mind

constructs in a perfectly unconscious way. This chair here looks

different with each movement of my head, each twinkle of my
eye, yet I perceive it as the same chair. Science is nothing else

than the endeavour to construct these invariants where they are

not obvious. If you are not a trained scientist and look through

a microscope you see nothing other than specks of Ught and

colour, not objects; you have to apply the technique of biological

science, consisting in altering conditions, observing correlations,

etc., to learn that what you see is a tissue with cancer cells, or

something like that. The words denoting things are applied to

permanent features of observation or observational invariants.

In physics this method has been made precise by using mathe-

matics. There the invariant against transformation is an exact

notion. Felix Klein in his celebrated Erlanger Programm has

classified the whole of mathematics according to this idea, and

the same could be done for physics.

From this standpoint I maintain that the particles are real,

as they represent invariants of observation. We believe in the

‘existence’ of the electron because it has a definite charge c and a

definite mass m and a definite spin 8\ that means in whatever

circumstances and experimental conditions you observe an effect

which theory ascribes to the presence of electrons you find for

these quantities, e, m, s, the same numerical values.

Whether you can now, on account of these results, imagine

the electron like a tiny grain of sand, having a definite position in

space, that is another matter. In fact you can, even in quantum

theory. What you cannot do is to suppose it also to have a

definite velocity at the same time; that is impossible according to

the uncertainty relation. Though in our everyday experience

we can ascribe to ordinary bodies definite positions and velocities,

there is no reason to assume the same for dimensions which are

below the limits of everyday experience.

Position and velocity are not invariants of observation. But

they are attributes of the idea of a particle, and we must use

them as soon as we have made up our minds to describe certain
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phenomena in terms ofparticles. Bohr has stressed the point that

our language is adapted to our intuitional concepts. We cannot

avoid using these even where they fail to have all the properties

of ordinary experience. Though an electron does not behave like

a grain of sand in every respect, it has enough invariant pro-

perties to be regarded as just as real.

The fact expressed by the uncertainty relation was first dis-

covered by interpreting the formalism of the theory. An
explanation appealing to intuition was given afterwards, namely

that the laws of nature themselves prohibit the measurement

with infinite accuracy because ofthe atomic structure of matter:

the most delicate instruments of observation are atoms or

photons or electrons, hence of the same order of magnitude as

the objects observed. Niels Bohr has applied this idea with great

success to illustrate the restrictions on simultaneous measure-

ments of quantities subject to an uncertainty rule, which he calls

‘complementary’ quantities.

One can describe one and the same experimental situation

about particles either in terms of accurate positions or in terms

of accurate momenta, but not both at the same time. The two

descriptions are complementary for a complete intuitive under-

standing. You find these things explained in many text-books

so that I need not dwell upon them.

The adjective complementary is sometimes also applied to

the particle aspect and the wave aspect of phenomena—I think

quite wrongly. One can call these ‘dual aspects’ and speak of a

‘duality’ of description, but there is nothing complementary as

both pictures are necessary for every real quantum phenomenon.

Only in limiting cases is an interpretation using particles alone

or waves alone possible. The particle case is that of classical

mechanics and is applicable only to the case of large masses,

e.g. to the centre of mass of an almost closed system. The wave

case is that of very large numbers of independent particles, as

illustrated by ordinary optics.

The question of whether the waves are something ‘real’ or a

fiction to describe and predict phenomena in a convenient way
is a matter of taste. I personally like to regard a probability
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wave, even in 3^-dimensional space, as a real thing, certainly

as more than a tool for mathematical calculations. For it has

the character of an invariant of observation; that means it

predicts the results of counting experiments, and we expect to

find the same average numbers, the same mean deviations, etc.,

if we actually perform the experiment many times under the

same experimental condition. Quite generally, how could we
rely on probability predictions if by this notion we do not refer

to something real and objective ? This consideration applies just

as much to the classical distribution function /(^; p,q) as to the

quantum-mechanical density matrix p{t\ q,q').

The difference between/and p lies only in the law ofpropaga-

tion, a difference which can be described as analogous to that

between geometrical optics and undulatory optics. In the latter

case there is the possibility of interference. The eigenfunctions

of quantum mechanics can be superposed like light waves and

produce what is often called ‘interference of probabihty*.

Fig. 2.

This leads sometimes to puzzling situations if one tries to ex-

press the observations only in terms of particles. Simple optical

experiments can be used as examples. Assume a source A of

light illuminating a screen B with two slits B^ and the

light penetrating these observed on a parallel screen (7. If only

one of the sHts B^ is open, one sees a diffraction pattern around

the point where the straight line AB-^ hits the screen, with a

bright central maximum surrounded by small fringes. When
both slits are open and the central maxima of the diffraction

pattern overlap, there appear in this region new interference

fringes, depending on the distance of the two slits.
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The intensity, i.e. the probability of finding photons on the

screen, in the case of both slits open, is therefore not a simple

superposition of those obtained when only one of the slits is

open. This is at once understandable if you use the picture of

probability waves determining the appearance of photons. For

the spreading of the waves depends on the whole arrangement,

and there is no miracle in the effect of shutting one slit. Yet if

you try to use the particles alone you get into trouble; for then a

particle must have passed one slit or the other and it is perfectly

mysterious how a slit at a finite distance can have an infiuence on

the diffraction pattern, Reichenbach, who has published a very

thorough book on the philosophical foundations of quantum

mechanics, speaks in such cases of ‘causal anomalies’. To avoid

the perplexity produced by them he distinguishes between

phenomena, i.e. things really observable, such as the appearance

ofthe photons on the screen, and ‘inter-phenomena’
,
i.e. theoreti-

cal constructions about what has happened to a photon on its

way, whether it has passed through one slit or the other. He
states rightly that the difficulties arise only from discussing

inter-phenomena, ‘That a photon has passed through the slit

is meaningless as a statement of a physical fact.’ If we want

to make it a physical fact we have to change the arrangement

in such a way that the passing ofa photon through the slit can

be really registered; but then it would not fly on undisturbed,

and the phenomenon on the screen would be changed. Reichen-

bach’s whole book is devoted to the discussion of this t3q)e of

difficulty. I agree with many of his discussions, though I object

to others. For instance, he treats the interference phenomenon

oftwo slits also in what he calls the wave interpretation; but here

he seems to me to have misunderstood the optical question. In

order to formulate the permitted and forbidden (or meaningless)

statements he suggests the use of a three-valued logic, where the

law of the ‘excluded middle’ {tertium non datur) does not hold.

I have the feeling that this goes too far. The problem is not one

of logic or logistic but of common sense. For the mathematical

theory, which is perfectly capable of accounting for the actual

observations, makes use only of ordinary two-valued logics.
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Difficulties arise solely if one transcends actual observations and

insists on using a special restricted range of intuitive images

and corresponding terms. Most physicists prefer to adapt their

imagination to the observations. Concerning the logical pro-

blem itself, I had the impression when reading Reichenbach’s

book that in explaining three-valued logic he constantly used

ordinary logic. This may be avoidable or justifiable. I remember

the days when I was in daily contact with Hilbert, who was

working on the logical foundations of mathematics. He dis-

tinguished two stages of logics: intuitive logic dealing with finite

sets ofstatements, and formal logic (logistics), which he described

as a game with meaningless symbols invented to deal with the

infinite sets of mathematics avoiding contradictions (like that

revealed in Russell’s paradox). But Godel showed that these

contradictions crop up again, and Hilbert’s attempt is to-day

generally considered a failure. I presume that three-valued

logic is another example of such a game with symbols. It is

certainly entertaining, but I doubt that natural philosophy will

gain much by playing it.

Thinking in terms of quantum theory needs some effort and

considerable practice. The clue is the point which I have

stressed above, that quantum mechanics does not describe a

situation in an objective external world, but a definite experimen-

tal arrangement for observing a section of the external world.

Without this idea even the formulation of a dynamical problem

in quantum theory is impossible. But if it is accepted, the funda-

mental indeterminacy in physical predictions becomes natural,

as no experimental arrangement can ever be absolutely precise.

I think that even the most fervent determinist cannot deny

that present quantum mechanics has served us well in actual

research. Yet he may still hope that one day it will be replaced

by a deterministic theory of the classical type.

Allow me to discuss briefly what the chances ofsuch a counter-

revolution are, and how I expect physics to develop in future.

It would be sniy and arrogant to deny any possibility of a

return to determinism. For no physical theory is final; new
experiences may force us to alterations and even reversions. Yet
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scanning the history of physics in the way we have done we see

fluctuations and vacillations, but hardly a reversion to more

primitive conceptions. I expect that our present theory will be

profoundly modified. For it is full of difficulties which I have not

mentioned at all—the self-energies of particles in interaction

and many other quantities, like collision cross-sections, lead to

divergent integrals. But I should never expect that these

difficulties could be solved by a return to classical concepts. I

expect just the opposite, that we shall have to sacrifice some

current ideas and use still more abstract methods. However,

these are only opinions. A more concrete contribution to this

question has been made by J. v. Neumann in his brilKant book,

Mathematische Orundldgen der Quantenmechanik, He puts the

theory on an axiomatic basis by deriving it from a few postulates

of a very plausible and general character, about the properties

of 'expectation values’ (averages) and their representation by

mathematical symbols. The result is that the formalism of

quantum mechanics is uniquely determined by these axioms; in

particular, no concealed parameters can be introduced with the

help of which the indeterministic description could be trans-

formed into a deterministic one. Hence if a future theory

should be deterministic, it cannot be a modification ofthe present

one but must be essentially different. How this should be

possible without sacrificing a whole treasure of well-established

results I leave to the determinists to worry about.

I for my part do not believe in the possibility of such a turn

of things. Though I am very much aware of the shortcomings

of quantum mechanics, I think that its indeterministic founda-

tions will be permanent, and this is what interests us from the

standpoint of these lectures on cause arid chance. There remains

now only to show how the ordinary, apparently deterministic

laws of physics can be obtained from these foundations.

QUANTUM KINETIC THEORY OF MATTER

The main problem of the classical kinetic theory of matter

was how to reconcile the reversibility of the mechanical motion

of the ultimate particles with the irreversibility of the thermo-
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d3mamical laws of matter in bulk. This was achieved by pro-

claiming a distinction between the true laws which are strictly

deterministic and reversible but of no use for us poor mortals

with our restricted means of observation and experimentation,

and the apparent laws which are the result of our ignorance and

obtained by a deliberate act of averaging, a kind of fraud or

falsification from the rigorous standpoint of determinism.

Quantum theory can appear with a cleaner conscience. It

has no deterministic bias and is statistical throughout. It has

accepted partial ignorance already on a lower level and need

not doctor the final laws.

In order to define a dynamicalphenomenon one has, as we have
seen, to split the system in two parts, one being the interesting

one, the other a ‘perturbation’; and this separation is highly

arbitrary and adaptable to the experimental arrangement to be

described. Now this circumstance can be exploited for the pro-

blem of thermodynamics. There one considers two (or more)

bodies first separated and in equilibrium, then brought into

contact and left to themselves until equilibrium is again

attained.

Let be the Hamiltonian of the first body, that of the

second, and write

= (9.31)

Then this is the combined Hamiltonian of the separated bodies.

If they are brought into contact the Hamiltonian will be differ-

eat, namely ^ ^

where F is the interaction, which for ordinary matter in bulk will

consist of surface forces. Now (9.32) has exactly the form of the

Hamiltonian of the fundamental dynamical problem, if we are

‘interested* in and that is just the case.

Hence we describe the behaviour of the combined system by
the proper variables of the unperturbed system, i.e. by the inte-

grals of motion of the first body, and the integrals

of motion A^^\..., of the second body, which aU together

form the integrals ofmotion ofthe separated bodies, represented
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by Hence we can use the solution of the dynamical problem

given before, namely (9.25),

P{t,X) = P(A)+ 2 e/(A, A'){P(A')~P(A)}+..., (9.33)
A'

where now A represents the sets of eigenvalues A^^^ = (A^^\

of Ai^>, and A^^) = (Ai^), A^^),...) of A^^),

Let us consider first statistical equilibrium. Then

P(^,A)-P(A);

hence the sum must vanish, and one must have

P(A') = P(A) (9.34)

for any two states A, A' for which the transition probability

J(A,A') is not zero. But we have seen further that these quan-

tities J(A,A') are in all practical cases proportional to the time

and vanish unless the energy is conserved, E = E' (see formulae

9.27, 9.28). Ifwe disregard cases where other constants ofmotion

exist for which a conservation law holds (like angularmomentum
for systems free to rotate), one can replace P(A) by P{E), But
as the total system consists of two parts which are practically

independent, one has

P(E) = P(A) = Pi(AW)P2(A(2)), (9.35)

where the two factors represent the probabilities of finding the

separated parts initially in the states A<^> and A^^), This fac5toriza-

tion need not be taken from the axioms of the calculus of pro-

bability; it is a consequence of quantum mechanics itself. For

if the energy is a sum of the form (9.31), the exact solution ofthe

fundamental equation for the density operator

| = [^,/>] (8.36)

is p = Pi /)2 ,
where p^ refers to the first system P2

second as according to (9.24) P{t, A) = p(t; A, A), the product

formula (9.35) holds not only for the stationary case (as long as

the interactions can be neglected). If now P<^>(A^^>) and

are the energies of the separated parts, one obtains from (9.35)

P(P»>+P(2)) P,(AW)P2(A(2)), (9.37)
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which is a functional equation for the three functions P, P^, Pg.

The solution is easily found to be (see Appendix, 31
)

p ^ p^ ^ ^olx-^Ex^ P^ ^ (9 ^33 )

with a = a^+ag, E — E^-^-E^ (9.39)

and the same j8 in all three expressions.

Thus we have found again the canonical distribution of Gibbs,

with the modification that the energies appearing are not explicit

functions of q and p (Hamiltonians) but of the eigenvalues

A, of the integrals of motion.

This derivation is obviously a direct descendant of Maxwell’s

first proof of his velocity distribution law which we discussed

previously, p. 61. But while the argument ofindependence is not

justifiable with regard to the three components of velocity, it is

perfectly legitimate for the constants of motion A. The fact

that the multiplication law of probabilities and the additivity

of energies for independent systems leads to the exponential

distribution law has, of course, been noticed and used by many
authors, beginning with Gibbs himself. This reasoning becomes,

with the help ofquantum mechanics, an exact proofwhich shows

the limits of validity of the results. For if there exist constants

of motion other than the energy, the distribution law has to

be modified, and therefore the whole of thermodynamics. This

happens for instance for bodies moving freely in space, like stars,

where the quantity p = l/kT is no longer a scalar but the time

component of a relativistic four-vector, the other components

representing jSv, where v is the mean velocity of the body. Yet

this is outside the scope of these lectures.

The simplest and much discussed application of quantum

statistics is that to the ideal gases. It was Einstein who first

noticed that for very low temperatures deviations from the

classical laws should appear. The Indian physicist, Bose, had

shown that one can obtain Planck’s law of radiation by regard-

ing the radiation as a ‘photon gas’ provided one did not treat

the photons as individual recognizable particles but as com-

pletely indistinguishable. Einstein transferred this idea to

material atoms. Later it was recognized that this so-called Bose-
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Einstein statistics was a straightforward consequence of quan-

tum mechanics; about the same time Fermi and Dirac discovered

another similar case which applies to electrons and other particles

with spin.

In the language used here the two ‘statistics’ can be simply

characterized by the symmetry of the density function

p(Xi, Xa,..., x^; xi, Xa,..., X^).

It is always symmetric, for indistinguishable particles, in both

sets of arguments, i.e. it remains unchanged if both sets are

subject to the same permutation. If, however, only one set is

permuted, p remains also unchanged in the Bose-Einstein case

for all permutations, while in the Fermi-Dirac case it does so

only for even permutations, and changes sign for odd permuta-

tions.

Applied to a system of free particles of equal structure, one

obtains at once from the canonical distribution law the pro-

perties of so-caUed degenerate gases. But as these are treated in

many text-books, I shall not discuss them here (see Appendix,

32 ).

After having considered statistical equilibrium we have now
to ask whether quantum mechanics accounts for the fact that

every system approaches equilibrium in time by the dissipation

of visible energy into heat, or, in other words, whether the

jET-theorem of Boltzmann holds.

This is the case indeed, and not difficult to prove. One defines

the total entropy, just as in classical theory, by

2P{t,x)\ogP{t,x)

A

where the summations are to be extended over all values of the

i.e. for each separate part of a coupled system over

and A^*^..., respectively, and for the whole system

over both sets. For loosely coupled systems the probabilities

are, as we have seen, multiplicative at any time

:

P{t; AW A<2)) = Pi(<,AW)P2(^,AW).

I6181

(9 .41 )
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From this it follows easily that the entropies are additive,

(
9 .42 )

Now substitute into (9.40) the explicit expression for P(t,X)

from (9.33) which holds for weak coupling; then by neglecting

higher powers of the small quantities e/(A, A') one obtains

. I J(A,A')g(A,A')

IP(A)
- -

A

where Q(X,X') = {P(X)-P(X')]log^y (9.44)

The transition probabilities e7(A,A') are, as we have seen, in all

practical cases proportional to time and vanish for transitions,

for which energy is not conserved; one has, according to (9.27)

and (9.28),

J(A,A') = (9.46)

where V is the interaction potential. These quantities t7(A, A')

are always positive. So is the denominator2 P(X), while Q(A, A')

A

is positive as long as P(A) differs from P(A').

Hence S increases with time and will continue to do so, until

statistical equilibrium is reached. For only then no further

increase of 8 will happen, as is seen by taking equilibrium as the

initial state (where according to (9.34) Q{X,X') — 0 for all non-

vanishing transitions).

It remains now to investigate whether quantum kinetics

leads, for matter in bulk, to the ordinary laws ofmotion and ther-

mal conduction as formulated by Cauchy. This is indeed the

case, as far as these laws are expressed in terms of stress, energy,

and flux of matter and heat. Yet, as we have seen, this is only

halfthe story, since Cauchy’s equations are rather void ofmean-

ing as long as the dependence of these quantities on strain,

temperature, and the rate of their changes in space and time are

not given. Now in these latter relations the difference between

quantum theory and classical theory appears and can reach vast

proportions under favourable circumstances, chiefly for low
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temperatures. The theory sketched in the following is mainly

due to my collaborator, Green.

The formal method of obtaining the hydrothermal equations

is very similar to that used in classical theory. Starting from the

fundamental equation for N particles

=
(
9 -46 )

a reduction process is applied to obtain similar equations for

particles, until the laws ofmotion for one particle

are reached.

The reduction consists, as in classical theory, in averaging

over one, say the last, particle of a set. The coordinates of each

particle appear twice as arguments of a matrix

p, = pjxw x(-); xW', x(2)',..., x(-)').

Put here x^^) = x^^^' and integrate over x^^^
;
the result is Xn Pnf ^

matrix which depends only on x^^)',..., x(^~^>'.

With the same normalization as in classical theory, (6.40), p. 67,

we write /tit \

Xa+iPa+i = i^—Q)Pa- (9 -47 )

By applying this operation several times to (9.46) one obtains

(see Appendix, 33)

^ = [H„p,]+8, {q=l,2....,N), (9.48)

where = |; Xg+i (9.49)
i=l

in full analogy with the corresponding classical equations (6.44),

(6.46). Here means the Hamiltonian of q particles,

the interaction between one of these (i) and a further particle

(g+l)> SbTidSq is called, as before, the statistical term.

The quantity pg(x, x) == 7i^(x) represents the generalized

number density for a ‘cluster’ of q particles, and in particular

ni(x) is the ordinary number density.

Now one can obtain generalized hydro-thermodynamical

equations from (9.47) by a similar process to that employed in
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classical theory. Instead of integrating over the velocities one

has to take the diagonal terms of the matrices (putting x = x'),

and one has to take some precautions in regard to non-commuta-

tivity by symmetrizing products, e.g. replacing ajS by J(aj8+j3a)

(see Appendix, 33). Exactly as in the classical equations of

motion there appears the average kinetic energy of the particle

(i) in a cluster of q particles which, divided by may be called

a kinetic temperature of the particle (i) in the cluster of q par-

ticles. One might expect that the quantity T-^ corresponds to the

ordinary temperature; but this is not the case.

It is well known from simple examples (e.g. the harmonic

oscillator) that in quantum theory for statistical equilibrium the

thermodynamic temperature T, defined as the integrating de-

nominator of entropy, is not equal to the mean square momen-

tum. Here in the case of non-equilibrium it turns out that not

only this happens, but that a similar deviation occurs with regard

to pressure. The thermodynamical pressure ^ is defined as the

work done by compression for unit change of volume; the kinetic

pressure^>1 is the isotropic part ofthe stress tensorin theequations

of motion. These two quantities differ in quantum theory.

Observable effects produced by this difference occur only for

extremely low temperatures. For gases these are so low that

they cannot be reached at all because condensation takes place

long before. Most substances are solid crystals in this region of

temperature; for these one has a relatively simple quantum

theory, initiated by Einstein, where the vibrating lattice is

regarded as equivalent to a set ofoscillators (the ‘normal modes’).

This theory represents the quantum effects in equilibrium

(specific heat, thermal expansion) fairly well down to zero

temperature, while the phenomena of flow are practically

unobservable.

There are only two cases where quantum phenomena of flow

at very low temperatures are conspicuous. One is liquid helium

which, owing to its small mass and weak cohesion, does not

crystallize under normal pressure even for the lowest tempera-

tures and becomes supra-fluid at about 2° absolute. The other

case is that of the electrons in metals which, though not an
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ordinary fluid, behave in many respects like one and, owing to

their tiny mass, exhibit quantum properties, the strangest of

which is supra-conductivity.

In order to confirm the principles of quantum statistics,

investigations of these two cases are of great interest. Both

have been studied theoretically in my department in Edinburgh,

and I wish to say a few words about our results.

In the supra-fluid state helium behaves very differently from a

normal liquid. It appears to lose its viscosity almost completely;

it flows through capillaries or narrow slits with a fixed velocity

almost independent of the pressure, creeps along the walls of the

container, and so on. A metal in the supra>conductive state has, as

the name says, no measurable electrical resistance and behaves

abnormally in other ways. A common and very conspicuous

feature of both phenomena is the sharpness of the transition

point which is accompanied by an anomaly of the specific

heat: it rises steeply if the temperature approaches the critical

value Tq from below, and drops suddenly for T = so that the

graph looks like the Greek letter A; hence the expression A-point

for TJj. However, this similarity cannot be very deeply rooted.

Where has one to expect, from the theoretical standpoint, the

beginning ofquantum phenomena ? Evidentlywhen the momen-
tump of the particles and some characteristic length I are reaching

the limit stated by the uncertainty principle, pi ~ ft. If we
equate the kinetic energy p^j2m to the thermal energy kT,

the critical temperature wiU be given by kT^, ^ h^j2mP, If one

substitutes here for k and fi the well-known numerical values and

for m the mass of a hydrogen atom times the atomic mass

number /x, one finds, in degrees absolute.

(9.60)

where I is measured in AngstrOm units (lO-^cm.).

For a hehum atom one has ft == 4, and if I is the mean distance

of two atoms (order 1 A) one obtains for a few degrees, which

agrees with the observed transition at about 2°. But for elec-

trons in metals one has ft = 1/1840 . If one now assumes one
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electron per atom and interprets I as their mean distance it would

be again of the order 1 A, hence the expression (9.50) would

become some thousand degrees and has therefore nothing to do

with the A-point of supra-conductivity. This temperature has,

in fact, another meaning; it is the so-called ‘degeneration tem-

perature’ Tg of the electronic fluid; below Tg, for instance at

ordinary temperatures, there are already strong deviations from

classical behaviour (e.g. the extremely small contribution of the

electrons to the specific heat), though not of the extreme charac-

ter of supra-conductivity. In order to explain the A-point of

supra-conductivity which lies for all metals at a few degrees

absolute, one has to take I about 200 times larger 200 A).

As the interpretation of this length is still controversial, I shall

not discuss supra-conductivity any further (see Appendix, 34).

Nor do I intend in the case of supra-fluidity of helium to give

a full explanation of the A-discontinuity, but I wish to direct

your attention to the thermo-mechanical properties of the

supra-liquid below the A-point, called He II.

I have already mentioned that in quantum liquids one has to

distinguish the ordinary thermodynamic temperature T and

pressure p from the kinetic temperature and pressure

The hydro-thermal equations contain only and p-^, and these

quantities are constant in equilibrium, i.e. for a state where no

change in time takes place. But and p-^ are not simple

functions of T and p but depend also on the velocity and its

gradient. Therefore in such a state permanent currents of mass

and ofenergymay flow as ifno viscosityexisted. This is reflected in

the energy balance which can be derived from the hydro-thermal

equations. One obtains a curious result which looks like a viola-

tion of the first law of thermodynamics; for the change of heat

is given by

dQ = TdS = dU+pdV-Vd7T, (9.51)

where all symbols have the usual meaning, and tt = Px—p is

the difference of the kinetic and thermodynamic pressures. This

equation differs from the ordinary thermodynamical expression

(5.12) by the term —F d7r;howis this possible ifthermodynamics
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claims rightly universal validity? This claim is quite legitimate,

but the usual form of the expression for dQ depends on the

assumption that a quasi-static, i,e. very slow, process can be

regarded as a sequence of equilibria each determined by the

instantaneous values of pressure and volume. This is correct in

the classical domain, because if the rate of change of external

action (compression, heat supply, etc.) is slowed down, all veloci-

ties in the fluid tend to disappear. Not so in quantum mechanics.

In consequence of the indeterminacy condition the momenta or

the velocities cannot decrease indefinitely if the coordinates of

the particles are restricted to very small regions. An investiga-

tion of the hydro-thermal equations shows that this effect is

preserved, to some degree, even for the visible velocities; it is

true there can exist a genuine statistical equilibrium where the

density is uniform and the currents of mass and energy vanish,

but there are also those states possible where certain combina-

tions of currents of mass (velocities) and of energy (heat) per-

manently exist. The production of these depends entirely on

the way in which the heat dQ is supplied to the system and cannot

be suppressed by just making the rate of change of volume very

small. We have therefore not a breakdown of the law of con-

servation of energy but of its traditional thermodynamical

formulation.

The consequences of that extra term in (9.51) are easily seen

by introducing instead of the internal energy the quantity

E == U-rrV (9.52)

in the expression (9.51) for dQ, which then reads

dQ = dE-^'P^dV, (9.53)

where is the kinetic pressure. This shows that the

specific heat at constant volume is

not {dUjdT)^, as in classical thermodynamics. Now as jpi, and

therefore tt = Pi—p, is very large at T = 0 and decreases with

increasing T to reach the value 0 at the A-point, one obtains for
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cJI^T) a curve exactly of the form actually observed. Hence the

A-anomaly is due to the coupling of heat currents with the

mass motion characteristic of quantum liquids. It is a molar,

macroscopic motion, the shape of which depends on the geo-

metrical conditions, presumably consisting oftiny closed threads

of fast-moving liquid, or groups of density waves.

A similar conception has been derived by several authors

(Tisza, Mendelssohn, Landau) from the experiments; they speak

of the liquid being a mixture of ordinary atoms and special

degenerate atoms (^-particles) which are in the lowest quantum

state and carry neither energy nor entropy. Yet in a liquid one

cannot attribute a quantum state to single atoms.

These considerations are also the clue to the understanding

of other anomalous phenomena, as the flow through narrow

capillaries or slits, the so-caUed fountain effect, the ‘second

sound’, etc. Green has studied the properties of He II in detail

and arrived at the conclusion that the quantum theory of liquids

can account for the strange behaviour of this substance.

I have dwelt on this special problem in some detail as it reveals

in a striking way that quantum phenomena are not conflned to

atomic physics or microphysics where one aims at observing

single particles, but appear also in molar physics which deals

with matter in bulk. From the fundamental standpoint this

distinction, so essential in classical physics, loses much of its

meaning in quantum theory. The ultimate laws are statistical,

and the deterministic form of the molar equations holds for

certain averages which for large numbers of particles or quanta

are all one wants to know.

Now these molar laws satisfy all postulates of classical

causality: they are deterministic and conform to the principles

of contiguity and antecedence.

With this statement the circle of our considerations about

cause and chance in physics is closed. We have seen how classical

physics struggled in vain to reconcile growing quantitative

observations with preconceived ideas on causality, derived from

everyday experience but raised to the level of metaphysical

postulates, and how it fought a losing battle against the intrusion
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of chance. To-day the order of ideas has been reversed: chance

has become the primary notion, mechanics an expression of its

quantitative laws, and the overwhelming evidence of causality

with all its attributes in the realm of ordinary experience is

satisfactorily explained by the statistical laws of large numbers.



X
METAPHYSICAL CONCLUSIONS

The statistical interpretation which I have presented in the last

section is now generally accepted by physicists all over the world,

with a few exceptions, amongst them a most remarkable one.

As I have mentioned before, Einstein does not accept it, but still

believes in and works on a return to a deterministic theory. To
illustrate his opinion, let me quote passages from two letters.

The first is dated 7 November 1944, and contains these lines:

‘In unserer wissenschaftlichen Erwartimg haben wir uns zu Antipoden
entwickelt. Du glaubst an den wiirfelnden Gott und ich an voile Gesetz-

lichkeit in einer Welt von etwas objektiv Seiendem, das ich auf wild

spekujativem Weg zu erhaschen suche. Ich hoffe, dass einer einen mehr
realistischen Weg, bezw. eine mehr greifbare Unterlage fur eine solche

Auffassung finden wird, als es mir gegeben ist. Der grosse anfangliche

Erfolg der Quantentheorie kann mich doch nicht zum Glauben an das

fundamentale Wiirfelspiel bringen. ’

(In our scientific expectations we have progressed towards antipodes.

You believe in the dice-playing god, and I in the perfect rule of law in a

world of something objectively existing which I try to catch in a wildly

speculative way. I hope that somebody will find a more realistic way,
or a more tangible foundation for such a conception than that which is

given to me. The great initial success of quantum theory cannot convert

me to believe in that fundamental game of dice.)

The second letter, which arrived just when I was writing these

pages (dated 3 December 1947), contains this passage:

‘Meine physikalische Haltimg kann ich Dir nicht so begriinden, dass

Du sie irgendwie vernunftig finden wiirdest. Ich sehe naturlich ein, dass

die principiell statistische Behandlungsweise, deren Notwendigkeit im
Rahmen des bestehenden Formalismus ja zuerst von Dir klar erkannt

wurde, einen bedeutenden Wahrheitsgehalt hat. Ich kann aber deshalb

nicht emsthaft daran glauben, weil die Theorie mit dem Grundsatz

unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum
darstellen soli, ohne spukhafte Femwirkungen. . . . Davon bin ich fest

iiberzeugt, dass man schliesslich bei einer Theorie landen wird, deren

gesetzmSssig verbundene Dinge nicht Wahrscheinlichkeiten, sondem
gedachte Tatbestande sind, wie man es bis vor kurzem als selbstver-

st&ndlich betrachtet hat. Zur Begriindung dieser tJberzeugung kann
ich fi-ber nicht logische Griinde, sondem nur meinen kleinen Finger als

Zeugen beibringen, also keine Autoritat, die ausserhalb meiner Haut
irgendwelchen Respekt einfldssen kann.’
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(I cannot substantiate my attitude to physics in such a manner that

you would find it in any way rational. I see of course that the statistical

interpretation (the necessity of which in the frame of the existing for-

malism has been first clearly recognized by yourself) has a considerable

content of truth. Yet I cannot seriously believe it because the theory

is inconsistent with the principle that physics has to represent a reality

in space and time without phantom actions over distances. ... I am
absolutely convinced that one will eventually arrive at a theory in which
the objects connected by laws are not probabilities, but conceived facts,

as one took for granted only a short time ago. However, I cannot provide

logical arguments for my conviction, but can only call on my little finger

as a witness, which cannot claim any authority to be respected outside

my own skin.)

I have quoted these letters because I think that the opinion

ofthe greatest living physicist, who has done more than anybody

else to establish modern ideas, must not be by-passed. Einstein

does not share the opinion held by most of us that there is over-

whelming evidence for quantum mechanics. Yet he concedes

‘initial success’ and ‘a considerable degree of truth’. He ob-

viously agrees that we have at present nothing better, but he

hopes that this will be achieved later, for he rejects the ‘dice-

playing god’. I have discussed the chances of a return to deter-

minism and found them slight. I have tried to show that classical

physics is involved in no less formidable conceptional difficulties

and had eventually to incorporate chance in its system. We
mortals have to play dice anyhow ifwe wish to deal with atomic

systems. Einstein’s principle of the existence of an objective

real world is therefore rather academic. On the other hand, his

contention that quantum theory has given up this principle is

not justified, if the conception of reality is properly imderstood.

Of this I shall say more presently.

Einstein’s letters teach us impressively the fact that even an

exact science like physics is based on fundamental beliefs. The

words ich glaube appear repeatedly, and once they are under-

lined. I shall not further discuss the difference between Ein-

stein’s principles and those which I have tried to extract from

the history of physics up to the present day. But I wish to

collect some of the fundamental assumptions which cannot be

further reduced but have to be accepted by an act of faith.



124 METAPHYSICAL CONCLUSIONS

Causality is such a principle, if it is defined as the belief in the

existence of mutual physical dependence of observable situa-

tions. However, all specifications of this dependence in regard

to space and time (contiguity, antecedence) and to the infinite

sharpness of observation (determinism) seem to me not funda-

mental, but consequences of the actual empirical laws.

Another metaphysical principle is incorporated in the notion

of probability. It is the belief that the predictions of statistical

calculations are more than an exercise of the brain, that they can

be trusted in the real world. This holds just as well for ordinary

probability as for the more refined mixture of probability and

mechanics formulated by quantum theory.

The two metaphysical conceptions ofcausality and probability

have been our main theme. Others, concerning logic, arithmetic,

space, and time, are quite beyond the frame of these lectures.

But let me add a few more which have occasionally occurred,

though I am sure that my list will be quite incomplete. One is

the beliefin harmony in nature, which is something distinct from

causality, as it can be circumscribed by words like beauty,

elegance, simplicity applied to certain formulations of natural

laws. This belief has played a considerable part in the develop-

ment of theoretical physics—remember Maxwell's equations of

the electromagnetic field, or Einstein’s relativity—but how far

it is a real guide in the search ofthe unknown or just the expres-

sion of our satisfaction to have discovered a significant relation,

I do not venture to say. For I have on occasion made the sad

discovery that a theory which seemed to me very lovely neverthe-

less did not work. And in regard to simplicity, opinions will

differ in many cases. Is Einstein’s law of gravitation simpler

than Newton’s? Trained mathematicians will answer Yes,

meaning the logical simplicity of the foundations, while others

will say emphatically No, because of the horrible complication

of the formalism. However this may be, this kind of beliefmay
help some specially gifted men in their research; for the validity

of the result it has little importance (see Appendix, 35).

The last belief I wish to discuss may be called the principle of

objectivity. It provides a criterion to distinguish subjective
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impressions from objective facts, namely by substituting for

given sense-data others which can be checked by other indivi-

duals. I have spoken about this method when I had to define

temperature: the subjective feeling of hot and cold is replaced

by the reading of a thermometer, which can be done by any

person without a sensation of hot or cold. It is perhaps the most

important rule of the code of natural science of which innumer-

able examples can be given, and it is obviously closely related

to the conception of scientific reality. For ifreality is understood

to mean the sum of observational invariants—and I cannot see

any other reasonable interpretation of this word in physics—^the

elimination of sense qualities is a necessary step to discover

them.

Here I must refer to the previous Waynflete Lectures given by

Professor E. D. Adrian, on The Physical Background of Percep-

tion^ because the results of physiological investigations seem to

me in perfect agreement with my suggestion about the meaning

ofreality in physics. The messages which the brain receives have

not the least similarity with the stimuli. They consist in pulses

of given intensities and frequencies, characteristic for the trans-

mitting nerve-fibre, which ends at a definite place of the cortex.

AU the brain ‘learns’ (I use here the objectionable language of

the ‘disquieting figure of a little hobgoblin sitting up aloft in the

cerebral hemisphere’) is a distribution or ‘map’ of pulses. From
this information it produces the image of the world by a process

which can metaphorically be called a consummate piece of com-

binatorial mathematics: it sorts out of the maze of indifferent

and varying signals invariant shapes and relations which form

the world of ordinary experience.

This unconscious process breaks down for scientific ultra-

experience, obtained by magnif3ring instruments. But then it is

continued in the full light of consciousness, by mathematical

reasoning. The result is the reality offered by theoretical physics.

The principle of objectivity can, I think, be applied to every

human experience, but is often quite out of place. For instance:

what is a fugue by Bach ? Is it the invariant cross-section, or the

common content of all printed or written copies, gramophone
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records, soundwaves at performances, etc., ofthis piece ofmusic ?

As a lover ofmusic I say No! that is not what I mean by a fugue.

It is something of another sphere where other notions apply,

and the essence of it is not ‘notions’ at all, but the immediate

impact on my soul of its beauty and greatness.

In cases like this, the idea of scientific objective reality is

obviously inadequate, almost absurd.

This is trivial, but I have to refer to it if I have to make good

my promise to discuss the bearing of modern physical thought

on philosophical problems, in particular on the problem of free

will. Since ancient times philosophers have been worried how
free will can be reconciled with causality, and after the tremen-

dous success of Newton’s deterministic theory of nature, this

problem seemed to be still more acute. Therefore, the advent of

indeterministic quantum theory was welcomed as opening a

possibility for the autonomy of the mind without a clash with

the laws of nature. Free will is primarily a subjective pheno-

menon, the interpretation of a sensation which we experience,

similar to a sense impression. We can and do, of course, project

it into the minds of our fellow beings just as we do in the case

ofmusic. We can also correlate it with other phenomena in order

to transform it into an objective relation, as the moralists,

sociologists, lawyers do—^but then it resembles the original

sensation no more than an intensity curve in a spectral diagram

resembles a colour which I see. After this transformation into

a sociological concept, free will is a symbolic expression to

describe the fact that the actions and reactions ofhuman beings

are conditioned by their internal mental structure and depend on

their whole and unaccountable history. Whether we believe

theoretically in strict determinism or not, we can make no use

of this theory since a human being is too complicated, and we
have to be content with a working hypothesis hke that of spon-

taneity of decision and responsibility of action. If you feel that

this clashes with determinism, you have now at your disposal

the modern indeterministic philosophy ofnature, you can assume

a certain ‘freedom’, i.e. deviation from the deterministic laws,

because these are only apparent and refer to averages. Yet if
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you believe in perfect freedom you will get into difficulties again,

because you cannot neglect the laws of statistics which are laws

of nature.

I think that the philosophical treatment of the problem of free

will suffers often (see Appendix, 36) from an insufficient dis-

tinction between the subjective and objective aspect. It is

doubtless more difficult to keep these apart in the case of such

sensations as free will, than in the case of colours, sounds, or

temperatures. But the application of scientific conceptions to a

subjective experience is an inadequate procedure in all such

cases.

You may call this an evasion of the problem, by means of

dividing all experience into two categories, instead of trying to

form one all-embracing picture of the world. This division is

indeed what I suggest and consider to be unavoidable. If quan-

tum theory has any philosophical importance at all, it lies in the

fact that it demonstrates for a single, sharply defined science the

necessityofdual aspectsandcomplementary considerations. Niels

Bohr has discussed this question with respect to many applica-

tions in physiology, psychology, and philosophy in general.

According to the rule of indeterminacy, you cannot measure

simultaneously position and velocity of particles, but you have

to make your choice. The situation is similar if you wish, for

instance, to determine the physico-chemical processes in the

brain connected with a mental process: it cannot be done because

the latter would be decidedly disturbed by the physical investiga-

tion. Complete knowledge of the physical situation is only

obtainable by a dissection which would mean the death of the

living organ or the whole creature, the destruction of the mental

situation. This example may suffice; you can find more and

subtler ones in Bohr’s writings. They illustrate the limits of

human understanding and direct the attention to the question

of fixing the boundary line, as physics has done in a narrow

field by discovering the quantum constant ft. Much futile

controversy could be avoided in this way. To show this by a

final example, I wish to refer to these lectures themselves which

deal only with one aspect of science, the theoretical one. There
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is a powerful school of eminent scientists who consider such

things to be a futile and snobbish sport, and the people who
spend their time on it drones. Science has imdoubtedly two

aspects: it can be regarded from the social standpoint as a prac-

tical collective endeavour for the improvement of human
conditions, but it can also be regarded from the individuahstic

standpoint, as a pursuit of mental desires, the himger for know-

ledge and understanding, a sister of art, philosophy, and religion.

Both aspects are justified, necessary, and complementary. The

collective enterprise of practical science consists in the end of

individuals and cannot thrive without their devotion. But

devotion does not suflSce; nothing great can be achieved without

the elementary curiosity ofthe philosopher. A proper balance is

needed. I have chosen the way which seemed to me to harmonize

best with the spirit of this ancient place of learning.
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1. (II. p. 8.) Multiple causes

Any event may have several causes. This possibility is not

excluded by my definition (given explicitly on p. 9), though I

speak there ofA being ‘the’ cause of the effect B, Actually the

‘number’ of causes, i.e. of conditions on which an effect B
depends, seems to me a rather meaningless notion. One often

finds the idea of a ‘causal chain’ where B depends
directly on on Ag, etc., so that B depends indirectly on
any of the A^. As the series may never end—where is a ‘first

cause’ to be found ?—the number of causes may be, and will be

in general, infinite. But there seems to be not the slightest

reason to assume only one such chain, or even a number of

chains; for the causes may be interlocked in a complicated way,
and a ‘network’ of causes (even in a multi-dimensional space)

seems to be a more appropriate picture. Yet why should it be

enumerable at all? The ‘set of all causes’ of an event seems to

me a notion just as dangerous as the notions which lead to logical

paradoxes ofthe type discovered by Russell. It is a metaphysical

idea which has produced much futile controversy. Therefore I

have tried to formulate my definition in such a way that this

question can be completely avoided.

2. (III. p. 13.) Derivation of Newton’s law from Kepler’s

laws

The fact that Newton’s law is a logical consequence ofKepler’s

laws is the basis on which my whole conception of causality in

physics rests. For it is, apart from Galileo’s simple demonstra-

tion the first and foremost example of a timeless cause-effect

relation derived from observations. In most text-books of

mechanics the opposite way (deduction of Kepler’s laws from

Newton’s) is followed. Therefore it may be useful to give the

full proof in modem terms.

We begin with formulating Kepler’s laws, splitting the first

one in two parts:

la. The orbit of a planet is a plane curve.

16. Ithas the shape ofan ellipse, one focus ofwhich is the sun.
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II. The area A swept by the radius vector increases propor-

tionally to time.

III. The ratio of the cube of the semi-axis a of the ellipse to

the square of the period T is the same for all planets.

From I a it follows that it suffices to consider a plane, intro-

ducing rectangular coordinates x,y, polar coordinates so

that I • j
a; = rcos0, y — rsmcf).

Indicating differentiation with respect to time by a dot, one

obtains for the velocity

X = r cos sin (j>, y f sin cos (j),

and for the acceleration

where

X = a^cos^—a^sin^, y = a^sin^-f-a^cos(/>,

= 2f<j>+r^

(
1
)

(2)

are the radial and tangential components of the acceleration.

Next we use II. The element of the area in polar coordinates

is obviously

If the origin is taken at the centre of the sun, the rate of in-

crease of A is constant, say dA — ^hdt, or

2A == r^(j> = h.

Now it is convenient to use the variable

1
U -

r

(
3 )
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instead ofr and to describe the orbit by expressing w as a function

oi <f>,u{<f>). Then ,

^ = =

Further,
dr ; \ du ' , du

(4)

(5)

(6)

Substituting (4), (5), (6) into (2), one finds

= 0.

Hence the acceleration has only a radial component a,, with

respect to the sun. To obtain the value of we calculate, with

the help of (4),

• dr h dr .du
^

~7^d4~

A -hhi^
dhi

and substitute this in (1):

Now we use lb. The polar equation of an ellipse is

,

l+€COS<^’

where q is the semi-latus rectum and e the numerical eccentricity;

(7)

(8 )

(9)

or ~ (1+€C0S^).

From this, one obtains

du ^ €

d<f>^ q

hence from (8)

. j d^u € j

. AM= u^ = r.

g q r^
(
10 )

The acceleration is directed to the sun (centripetal) and is

inversely proportional to the square of the distance.
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According to the third law III one can write

a* _ ft

(11 )

where the constant fi is the same for all planets.

Now integrating (3) for a full revolution one has

2A == hT. (12)

On the other hand, the area of an ellipse is given by

A = Trobf (13)

where a and b are the major and minor semi-axes.

Taking in (9) = 0 and = tt one gets the aphelion and
perihelion distances; half of the sum of those is the semi-major

axis:

a = l(.

2\l+* •A)
while the semi-minor axis is given by

6 -

hence aq = 6®.

Substituting this in (13), one gets from (12)

solving with respect to h^/q and using (11):

Therefore the law of acceleration (10) becomes

_ II

(14)

(16)

where ft is the same for all planets, hence a property of the sun,

called the gravitational mass.

This demonstrates the statement of the text that Newton’s
derivation of his law of force is purely deductive, based on the

inductivework ofTycho Brahe and Kepler. The new feature due
toNewton is the theoretical interpretationofthe deduced formula

for the acceleration, as representing the ‘cause’ of the motion.
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or the force determining the motion, which then led him to the

fundamental idea ofgeneral gravitation (each body attracts each

other one). In the text-books this situation is not always clear;

this may be due to Newton’s own representation in his Principia

where he uses only geometrical constructions in the classical

style of the Greeks. Yet it is known that he possessed the

methods of infinitesimal calculus (theory of fluxions) for many
years. I do not know whether he actually discovered his results

with the help of the calculus; it seems to me incredible that he

should not. He was obviously keen to avoid new mathematical

methods in order to comply with the taste of his contemporaries.

But it is known also that he liked to conceal his real ideas by
dressing them up. This tendency is found in Gauss and other

great mathematicians as well and has survived to our time,

much to the disadvantage of science.

Newton regarded the calculation of terrestrial gravity from
astronomical data as the crucial test of his theory, and he with-

held publication for years as the available data about the radius

of the earth were not satisfactory. The formula (3.3) of the text

is simply obtained by regarding the earth as central body and
the moon as ‘planet’. Then fx is the gravitational mass of the

earth which can be obtained from (11) by inserting for a the

mean distance R ofthe centre ofthe moon from that ofthe earth,

and for T the length of the month. Substituting p =
into (15), where r is the radius of the earth, one obtains for the

acceleration on the earth’s surface g (
= —a,.) the formula (3.3)

of the text.

(16)

If here the values i?/r = 60, jB = 3-84x10^® cm., and
T = 21^ 7^ 43™ 11-5® = 2*361 X 10® sec. are substituted, one

finds g = 980 *2 cm. aecr^, while the observed value (extrapolated

to the pole) is gr = 980*6 cm. sec.”^

This reasoning is based on the plausible assumption that the

acceleration produced by a material sphere at a point outside is

independent of the radial distribution of density and the mass of

the sphere can therefore be regarded as concentrated in the

centre. The rigorous proof of this lemma forms an important

part of Newton’s considerations and was presumably achieved

with the help of his theory of fluxions.
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3. (IV. p. 20.) Cauchy’s mechanics of continuous media

The mathematical tool for handling continuous substances is

the following theorem of Gauss (also attributed to Green).

If a vector field A is defined inside and on the surface S of a,

volume F, one has

divAdF = jA.nd^S, (1)

s

where n is the unit vector in the direction of the outer normal of

the surface element dS and

divA = ?^+^+^ = -^.A.
dx dy dz dx

If p is the density, the total mass inside V is

= jpdr.m

(
2

)

(3)

The amount ofmass leaving the volume through the surface is

J
u . n dS,

s

where u = pv is the current, v the velocity.

The indestructibility of mass is then expressed by

J
u.n = 0.

Substituting (3) and applying (1), one obtains a volume
integral, which vanishes for any surface; hence its integrand

must be zero: ^+divu=:0. (4)

This is the continuity equation (4.5) of the text.

Consider now the forces acting on the volume F. Neglecting

those forces which act on each volume element (like Newton’s

gravitation), we assume with Cauchy that there are surface

forces or tensions, acting on each element dS of the surface 8,

and proportional to dS, They will also depend on the orientation

of dSy i.e. on the normal vector n, and can therefore be written

T^dS, If n coincides with one of the three axes of coordinates

x,y,z, the corresponding forces per unit area may be repre-

sented by the vectors Ta.,Ty,T^. Now the projections of an
element dS on the coordinate planes are

dS^ = ng.dS, dSy = UydS, dS^ = n^dS.
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The equilibrium of the tetrahedron with the sides dS, cZaS^, dSy, dS^

then leads to the equation

r^dS = T,dS,+TydSy+TJ8,,

or == ^ z'^z> (^)

which is the formula (4.6) of the text.

Consider further the equilibrium of a rectangular volume
element, and in particular its cross-section 2 = 0, with the sides

dx, dy. The components of T^. in this plane may be denoted by
and those of by Ty^, Tyy. Then the tangential com-

ponents on the surfaces dydz and dxdz produce a couple about the

origin 0 with the moment

{T^y dydz)dx— (Ty^ dxdz)dy.

This must vanish in equilibrium; therefore one has

T ^ T•^xy •‘yx^

and the corresponding equations obtained by cyclic permutation

of the indices, (4.7) of the text. Hence the stress tensor T defined
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by (4.8) is symmetrical. One can express this, with the help of

(6), in the form

(Tn)® == = Ta..n,

where is the vector (i;^, T^y^

The ir-component of the total force F = ^T^dS can now be

transformed with the help of formula (1) into a volume integral

-Px =
J

(T„Ld-S = J
T^.n (Z-S = I

divT.e^F.

Using the tensor notation ofthe text, (4.10), one can write this

F = J<iivT<ZF. (6)

This has to be equated to the rate of change of momentum of a

given amount of matter, i.e. enclosed in a volume moving in

time. One has for any function O of space

ir4>dF = lim^| f <i>dV-{<t>dV
dt] At-*oM\ J j

V(e+A<) Fit)

AF '

The second integral is extended over the volume between two
infinitesimally near positions of the surface, so that

dV^n.vMdS
and therefore

Hence

|<Dd:F = div(Ov)dFA<.

If this is applied to the components ofthe momentum density

pv one obtains for the rate of change of the total momentum P;

f = = J
{£!g2+div(,w))W
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Here the second integral vanishes in consequence of the continu-

ity equation (4), with u = pv. In the first integral appears the

convective derivative, defined by (4.11) of the text,

dv

W’-ai+VB.r

Now the equation of motion

dt
= F

reduces in virtue of (6) and (8) to (4.9) of the text:

dv T
(9)

Consider in particular an elastic fluid where

T = T = T ~ n T = T == T =0
•^xx '^yy -^zz Jri -^yz -^^zx -^xy

and the pressure ^ is a function of p alone. Then the continuity

equation and the equations of motion

^+div(pv) = 0,

dx

are four differential equations for the four functions />,

If one wishes to determine small deviations from equilibrium,

then V and ^ = p—po are small and pQ constant with regard to

space and time. Then the last two equations reduce in first

approximation to ^

,

^+p^divY = 0
,

av

By differentiating the first of these with respect to time and
dv

substituting from the second, one finds

av
at*

= 0,
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or with A- ^
7— = TT- '-TT-

=
0X 5x ex

and -c2
\dpjo

’ (10)

<II (11)

This is the equation (4.13) of the text applied to the variation of

density Each of the velocity components satisfies the same
equation, which is the prototype of all laws ofwave propagation.

4. (IV. p. 24.) Maxwell’s equations of the electromagnetic
field

The mathematical part of Maxwell’s work consisted in con-

densing the experimental laws, mentioned in the text, in a set

of differential equations which, with the usual notation, are

divD = 47rp, curlH == — u,
c

divB = 0, curlE-f-B = 0, (1)
c

D = cE, B = /xH.

To give a simple example. Coulomb’s law for the electrostatic

field is obtained by putting B==0, H = 0, u = 0; then there

remains t\ a r.divD = 4o7Tp, curlE = 0.

The second equation implies that there is a potential 0, such that

E = d(f}

In vacuo, where D = E, one obtains therefore Poisson’s

equation
_divE = A# = -4up.

The solution is
^ J r

provided singularities are excluded; this formula expresses

Coulomb’s law for a continuous distribution of density. In a

similar way one obtains for stationary states (B = 0) the law of

Biot and Savart for the magnetic field of a current of density u.
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Maxwell’s physical idea consisted in discovering the asym-

metry in the equations (1) which, in our style of writing, is

obvious even to the untrained eye: the missing term ^6 in the

second equation. The logical necessity of this term follows from

the fact of the existence of open currents, e.g. discharges of con-

densers through wires. In this case the charge on the condenser

changes in time, hence ^ 0; on the other hand, the equations

c
(1) imply divu = — divcurlH = 0. Therefore the continuity

4:7T

equation p+divu — 0 is violated.

To amend this Maxwell postulated a new type of current

bridging the gap between the conductors in the condenser, with

a certain density w, so that

curlH = — (u+w). (3)
0

Then taking the div operation one has

1
div w = —div u == p = — divD.

in

The simplest way of satisfying this equation is putting

w = (4)

so that the corresponding equation in Maxwell’s set becomes

curlH-i6 =— U (5)
c c

and complete symmetry between electric and magnetic quanti-

ties is obtained (apart from the fact that the latter have no true

charge and current).

The modified system of field equations permits the prediction

of waves with finite velocity. In an isotropic substance free of

charges and currents (p = 0
, u = 0

, D = cE, B = pH) one has

curlH--E = 0. curlE+^^H = 0;
c c

taking the curl of one of them, and using the formula that for a
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vector with vanishing div one has curl curl = —A, one obtains

for each component of E and H the wave equation

c? dt^
~ ’ Cl =

VM" (6)

For vacuum (c = /x = 1) the velocity of propagation should

therefore be equal to the electromagnetic constant c. As stated

in the text, this constant has the dimensions of a velocity and can
be measured by determining the magnetic field of a current

produced by a condenser discharge (measured therefore electro-

statically). Such experiments had been performed by Kohl-

rausch and Weber, and their result for c agreed with the velocity

of light in vacuo. This evidence for the electromagnetic theory of

light was strongly enhanced by experiments carried out by
Boltzmann, which showed that the velocity of light in simple

substances (rare gases, which are monatomic) can be calculated

from their dielectric constant c
(
ju, being practically = 1 ) with the

help of Maxwell’s formula = c/Vc.

Maxwell’s formulation satisfies contiguity, but its relation to

Cauchy’s form of the dynamical laws has still to be established.

The electric and magnetic field vectors, though originally defined

by the forces on point charges and magnetic poles (which actually

do not exist), are defined by the equations also in places where
neither charges nor currents exist. Yet they are not stresses

themselves; they are analogous to strains, on which the stresses

depend. The law of this connexion has also been found by Max-
well; it is a mathematical formulation of Faraday’s intuitive

interpretation of the mechanical reactions between electrified

and magnetized bodies. A short indication must here suffice.

Apart from the electric force on a point charge e, F = cE,

there exists a mechanical force on the element of a linear current

u, produced by a magnetic field H; this force is perpendicular

to H and to the current u and therefore does no work. It is not

quite uniquely determined, as one can obviously add any force

whose line integral over a closed circuit vanishes. The simplest

expression is: -

F = iuAB,

as can be seen by considering the change of magnetic energy

Itt J
H . B dF produced by a virtual displacement of an element

of the current.
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To illustrate Maxwell’s procedure it suffices to consider charge

distributions in vacuo with density p and current u = pv.

Combining the two forces F = eE and F = i u A B into one

expression, one has for the density of force

E+i(vAH)},
(
7 )

the so-called Lorentz force.

Substituting here for p and pv the expressions from Maxwell’s

equations one can, by elementary transformations, bring f into

the form of Cauchy,

where

f = div T,

These are the celebrated formulae of Maxwell’s tensions. They
can be easily generalized for material bodies with dielectric

constant and permeability, and they have become the prototype

for similar expressions in other field theories, e.g. gravitation

(Einstein), electronic field (Dirac), meson field (Yukawa).

5. (IV. p. 27.) Relativity

It is impossible to give a short sketch ofthe theory ofrelativity,

and the reader is referred to the text-books. The best representa-

tion seems to me still the article in vol. v of the Mathematical

Encyclopaedia written by W. Pauli when he was a student,

about twenty years of age. There one finds a clear statement of

the experimental facts which led to the mathematical theory

almost unambiguously. Eddington’s treatment gives the im-

pression that the results could have been obtained—or even

have been obtained—by pure reason, using epistemological

principles. I need not say that this is wrong and misleading.

There was, of course, a philosophical urge behind Einstein’s

relentless effort; in particular the violation of contiguity in

Newton’s theory seemed to him unacceptable. Yet the greatness

of his achievement was just that he based his own theory not on

preconceived notions but on hard facts, facts which were obvious
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to everybody, but noticed by nobody. The main fact was the

identity of inertial and gravitational mass, which he expressed

as the principle ofequivalence between acceleration and gravita-

tion. An observer in a closed box cannot decide by any experi-

ment whether an observed acceleration of a body in the box is

due to gravity produced by external bodies or to an acceleration

of the box in the opposite direction. This principle means that

arbitrary, non-linear transformations of time must be admitted.

But the formal symmetry between space-coordinates and time

discovered by Minkowski made it very improbable that the

transformations of space should be linear, and this was corro-

borated by considering rotating bodies: a volume element on the

periphery should undergo a peripheral contraction according

to the results of special relativity, but remain unchanged in the

radial direction. Hence acceleration was necessarily connected

with deformation. This led to the postulate that all laws of

nature ought to be unchanged (covariant) with respect to

arbitrary space-time transformations. But as special relativity

must be preserved in small domains, the postulate of invariance

of the line element had to be made.

The long struggle of Einstein to find the general covariant field

equations was due to the difficulty for a physicist to assimilate

the mathematical ideas necessary, ideas which were in fact

completely worked out by Riemann and his successors, Levi-

Civita, Ricci, and others.

I wish to add here only one remark. The physical significance

of the line element seems to me rather mystical in a genuinely

continuous space-time. If it is replaced by the assumption of

parallel displacement (affine connexion), this impression of

mystery is still further enhanced. On the other hand, the

appearance of a,finite length in the ultimate equations of physics

can be expected. Quantum theory is the first step in this direc-

tion; it introduces not a universal length but a constant, Planck’s

Jhy of the dimension length times momentum into the laws of

physics. There are numerous indications that the further

development of physics will lead to a separate appearance of

these two factors, h = q.p, in the ultimate laws. The difficulties

of present-day physics are centred about the problem of intro-

ducing this length g in a way which satisfies the principle of

relativity. This fact seems to indicate that relativity itself
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needs a generalization where the infinitesimal element ds is

replaced by a finite length.

The papers quoted in the text are: A. Einstein, L. Infeld, and

B. Hoffmann, Ann. of Math., 39, no. 1, p. 65 (Princeton,

1938); V. A. Fock, Journ.of Phys. U.S.S.E. l,no. 2, p. 81 (1939).

6. (V. p. 38.) On classical and modern thermodynamics

It is often said that the classical derivation of the second law

of thermodynamics is much simpler than Carath6odory’s as it

needs less abstract conceptions than Pfaffian equations. But
this objection is quite wrong. For what one has to show is the

existence of an integrating denominator of dQ. This is trivial

for a Pfaffian oftwo variables (representing, for example, a single

fluid with F, S') ;
it must be shown not to be trivial and even, in

general, wrong for Pfaffians with more than two variables (e.g. two
fluids in thermal contact with Ii,p2,i?). Otherwise, the student

cannot possibly understand what the fuss is all about. But that

means explaining to him the difference between the two classes

of Pfaffians of three variables, the integrable ones and the non-

integrable ones. Without that all talk about Carnot cycles is just

empty verbiage. But as soon as one has this difference, why not

then use the simple criterion of accessibility from neighbouring

points, instead of invoking quite new ideas borrowed from

engineering ? I think a satisfactory lecture or text-book should

bring this classical reasoning as a corollary of historical interest,

as I have suggested long ago in a series of papers {Phys. Zeitschr.

22, pp. 218, 249, 282 (1921)).

Since writing the text I have come across one book which

gives a short account of Carath^odory’s theory, H. Margenau
and G. M. Murphy, The Mathematics of Physics and Chemistry

(D. van Nostrand Co., New York, 1943), § 1.15, p. 26. But
though the mathematics is correct, it does not do justice to the

idea. For it says on p. 28: ‘This formal mathematical con-

sequence of the properties of the Pfaff equation [namely the

theorem proved in the next section of the appendix] is known as

the principle of Carath^odory. It is exactly what we need for

thermod3mLamics.’ Carath^odory’s principle is, of course, not

that formal mathematical theorem but the induction from obser-

vation that there are inaccessible states in any neighbourhood

of a given state.
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7. (V. p. 39.) Theorem of accessibility

An example of a PfaiHian which has no integrating denomina-

tor (by the way, the same example as described in geometrical

terms in the text) is this:

dQ = —y dx-\-x dy+k dz,

where i is a constant. If it were possible to write dQ in the

form Xd<f>, where A and
<f)
are functions of x, y, z, one would have

hence

or

dydz

'dz

dcf) y d<j> X

dx
''

A’ By

8(x\ _ d (k\ e^
8z\X) ~ ^ Ia]’ dzdx

3

dxdy lAj“

8\ ex ,
ex

'’By’

—* *5->
dx

d(f>

Yz

dz\X,

k

y

^(k
dx\X,

d (x

dx\X

,

dX
2X = x-—Y-y—

.

dx^^ dy

By substituting dXfdx and dX/dy from the first two equations

in the third one finds
A == 0

Examples like this show clearly that the existence of an

integrating denominator is an exception.

We now give the proof of the theorem of accessibility.

Consider the solutions of the Pfaffian

dQ = X dx-{-Y dy+Z dz = 0, (1)

which lie in a given surface S,

x == x{u, v), y == y{u, v), z = z{u, v).

They satisfy a Pfaffian

dQ ^ U dn-\-V dv = 0
, (2)

U X—+Y^+Z—,
du* du~ du

where
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Hence through every pointF ofS there passes one curve, because

(2) is equivalent to the ordinary differential equation

dv~ U'

which has a one-parameter set of solutions <l>[u,v) = const.,

covering the surface S.

Letusnowsuppose that,inthe neighbourhood ofapointP, there

are inaccessible points; let Q be one of these. Construct through

P a straight line JSf, which is not a solution of (1), and the plane tt

through Q and JSf. In tt there is just one curve satisfying (1) and
going through Q\ this curve will meet the line JSf'at a point i2.

Then R must be inaccessible from P; for if there should exist a

solution leading from P to P, then one could also reach Q from
P by a continuous (though kinked) solution curve, which
contradicts the assumption that Q is inaccessible from P. The
point R can be made to lie as near to P as one wishes by choosing

Q near enough to P.

Now we move the straight line -Sf parallel to itself in a cyclic

way so that it describes a closed cylinder. Then there exists on
this cylinder a solution curve ^ which starts from P on ^and
meets JS? again at a point N, It follows that N and P must coin-

cide. For otherwise one could, by deforming the cylinder, make
N sweep along the line JSftowards P and beyond P. Hence there

would be an interval of accessible points (like N) around P,
6181 T,
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while it has been proved before that there are inaccessible points

Q in any neighbourhood of P.

As N now coincides with P the connecting curve ^ can be

made, by steady deformation of the cylinder, to describe a

surface which contains obviously all solutions starting from P.

If this surface is given by <f>(x,y,z) = 0, one has

dQ == A d<f),

which is the theorem to be proved.

The function ^ and the factor A are not uniquely determined;

if ^ is replaced by
<^{<f>)

one has

Ad<DwithA= A^.
d<f>

8. (V. p. 43.) Thermodynamics of chemical equilibria

Carath6odory’s original publication on his foundation of

thermod5ntiamics {Math, Ann. 61, p. 355, 1909) is written in a

very abstract way. He considers a type of systems which are

called simple and defined by the property that of the parameters

necessary to fix a state of equilibrium all except one are con-

figurational variables, i.e. such that their values can be arbi-

trarily prescribed (like volumes). In my own presentation of the

theory, of 1 92 1 (quoted in Appendix, 6), there is only a hint at the

end (§ 9) how such variables can be introduced in more complica-

ted cases, as for instance for chemical equilibria where the concen-

trations of the constituents can be changed. I hoped at that time

that this might be worked out by the chemists themselves, for it

needs nothing more than the usual method of semi-permeable

walls with a slight modification of the wording. As this has not

happened, I shall give here a short indication how to do it.

I consider first a simple fluid (without decomposition), but

arrange it in such a way that volume V and mass M are both

independently changeable. For this purpose one has to imagine

a cylinder with a piston attached to the volume F, connected

by a valve, through which substance can be pressed into the

volume V considered. The position of the auxiliary piston

determines uniquely the mass M contained in V ; hence M can

be regarded as a configuration variable in Carath6odory’s sense.

If the valve is closed, F can be changed, by moving the ‘main’

piston, without altering M. Hence M and F are both indepen-
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dent configuration variables, and the work done for any change

of them must be regarded as measurable. If this work is deter-

mined adiabatically one obtains the energy function, say in

terms of F, M and the empirical temperature i?, C7(F,-3f,^).

Fig. 8.

When this is known the differential of heat is defined by the

difference dQ = dU+pdV-ixdM, (
1

)

where p and fi arc functions of the state (F, M.d') hke Z7, which

can be regarded as empirically known.

Now one has in (1) a Pfaffian of three variables and can apply

the same considerations as before which lead to the result thatdQ
is integrable and can be equated to T dS, Hence one can write

dU = TdS-pdV+ixdM. (2)

But U must be a homogeneous function of the first order in the

variables 8, F, M. If one introduces the specific variables

u,8,vhy u = Mu, 8 = Ms, V = Mv, (3)

one has according to Euler’s theorem

u — Ts—pv-\-ix, (4)

where 7 = _, (5)

and then, from (2), du = Tds—pdv. (6)

If the substance inside F is a chemical compound and one wishes

to investigate its decomposition into n components, one assumes

n cylinders with pistons attached to F, separated from F by
semi-permeable walls, each of which allows the passage of only

one of the components. Then one has in the same way

dU = TdS-pdV+^PidM^, (7 )
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where F, Mi, can be regarded as configuration variables

and ?7,

2

), known functions ofthese. Now, as above,

the specific energy, entropy, and volume are introduced and
further the concentrations by

=
(
8 )

where M is the total mass: M = ^ hence
%

ici = i. (9)
i=l

One obtains from Euler’s theorem

u = Ts—pv-\- XfJ-iCi,
i

with T —
ds'

P
du

'Tv'
Pi

du

(
10

)

(
11

)

where the differentiation with respect to the is performed as

if they were independent; and

du = Td8—pdv-{-^yL^dc^,
(
12

)

The formalism of thermodynamics consists in deriving rela-

tions between the variables by differentiating the equations

(11), e.g. ^_^8p dpi

dv d3‘

dp
rs

== —
dv dc^

As experiments are often performed at constant pressure or

temperature or both, one uses instead of u(s,v,Ci,..,,c^), the

functions free energy u—Ts =/, enthalpy u-\-pv = w, or free

enthalpy fi = u+pv—Ta (defined by (4)). For the latter, for

example, it follows from (12) that

dfjL = ^dT+vdp-\-
^

or 5 = — dp dp dp

so that for T = const., p = const., one has simply

dp — ^PidCf.

The most important theorem, which follows from these general

(13)

(14)

(16)
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equations, is Gibbs’s phase rule. The system may exist in differ-

ent phases if the n equations

== Ci {i = 1 ,..., n) (16)

have several solutions. Let m be the number of independent

solutions; then there arem phases which can be ordered in such a

way that each has contact with two others only. Hence there

are m— 1 interfaces and n equations of the form (16) for each,

altogether independent equations. On the other hand,

there are (n—1) independent concentrations for each

phase, i.e. 1) for the whole system, to which the two vari-

ables T have to be added; hence l)-f-2 independent

variables. Thenumber of arbitrary parameters, or the number of

degrees of freedom of the system, is therefore

m(?i— 1)+2—7i(m— 1) = w—m+2.
So for a single pure substance, n = the number of degrees of

freedom is 3-~m; hence there are three cases m = 1, 2, 3 corre-

sponding to one phase, two or three coexisting phases; more than
three phases cannot be in equilibrium. All further progress in

thermodynamics is based on special assumptions about the func-

tions involved, either prompted by experiment, or chosen by an

argument of simplicity, or—and this is the most important

step—derived from statistical considerations.

9. (V. p. 44.) Velocity of sound in gases

The simple problem of calculating the adiabatic law for an
ideal gas gives me the opportunity to show how the theory of

Carath6odory determines uniquely the absolute temperature

and entropy.

The ideal gas is defined by two properties: (1) Boyle’s law,

the isotherms are given hy pV — const.; (2) the same quantity

pV remains constant if the gas expands without doing work. In

mathematical symbols.

pV = U = U(&).

Hence dQ = dU+pdV
tIV= V'd&+F~. (1)

If 0 is defined by
logd = j*

U'(&)d&

. FiP') ’
(2)
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(1) can be written

dQ = F{») dlogiOV);

hence one can put A == F(&), ^ = log(0F) and obtain from the

equation (5.25) of the text

_ a(iogA) _ eiogF(&)
~ 8& ~ d&

'

Then (6.27) gives, writing C = 1/jB, the usual form of the

equation of state
^3^

and >S = 5o+^log(0F).

If the special assumption is made, that U depends linearly on

pV (which holds for dilute gases with the same approximation

as Boyle’s law), one has U = c^T and, from (2),

The entropy becomes therefore

/S = ;So+log(T«*F«), (4)

or, substituting p for T from (3),

S = Si+logip^” V^p), (6)

where Cp — c„4-i2 (6)

is the specific heat for constant pressure. Hence the adiabatic

law S — const, is equivalent to

pW = const.,
(
7

)

which is identical with the equation p = apy in the text, as the

density p is reciprocal to the volume F.

The velocity ofSound was calculated in Appendix, 3 ;
according

to (3.10) it is .

,

aITp'

F r the isothermal law, p == ap, this means
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while, for the adiabatic law, p = apy, one finds

which is considerably larger; e.g. for diatomic molecules (air)

experiment, and kinetic theory as well, give y = | = 1 '4.

10. (V. p. 45.) Thermodynamics of irreversible processes

Since I wrote this section of the text a new development of

the descriptive or phenomenological theory has come to my
knowledge which is remarkable enough to be mentioned.

It started in 1931 with a paper by Onsager in which the

attempt was made to build up a thermodynamics of irreversible

processes by taking from the kinetic theory one single result,

called the theorem of microscopic reversibility, and to show that

this suffices to obtain some important properties of the fiow of

heat, matter, and electricity. The starting-point is Einstein’s

theory of fluctuations (see Appendix, 20), where the relation

S = klogP between probability P and entropy S is reversed,

using the known dependence of S on observable quantities to

determine the probability P of small deviations from equili-

brium. Then it is assumed that the law for the decay of an
accidental accumulation of some quantity (mass, energy, tem-

perature, etc.) is the same as that for the flow of the same
quantity under artificially produced macroscopic conditions.

This, together with the reversibihty theorem mentioned,

determines the main features of the flow. The theory has been

essentially improved by Casimir and others, amongst whom
the book of Prigogine, from de Donders’s school of thermo-

dynamics in Brussels, must be mentioned. Here is a list of the

literature:

L. Onsager, Phys. Rev. 37, p. 406 (1931) ; 38, p. 2265 (1931).

H. B. G. Casimir, Philips Research Reports, 1, 185-96 (April 1946);

Rev. Mod. Physics, 17, p. 343 (1945).

C. Eckhart, Phys. Rev. 58, pp. 267, 269, 919, 924 (1940),

J. Meixner, Ann. d. Phys. (v), 39, p. 333 (1941); 41, p. 409 (1943);

43, p. 244 (1943) ; Z. phys. Chem. B, 53, p. 235 (1943).

S. R. de Groot, UEffet Soret, thesis, Amsterdam (1945); Journal

de Physique, no. 6, p. 191.

I. Prigogine, Mude thermodynamique des phinomlnes irrdversibles

(Paris, Dunod ; Li4ge, Desoer, 1947).



152 APPENDIX

11. (VI. p. 47.) Elementary kinetic theory of gases

To derive equation (6.1) of the text, consider the molecules

of a gas to be elastic balls which at impact on the wall of the

vessel recoil without loss of energy and
momentum. If the y^-plane coincides

with the wall the a;-component of the

momentum of a molecule is changed

into — hence the momentum 2mf is

transferred to the wall. Let be the

number of molecules per unit of volume
having the velocity vector v. If one

constructs a cylinder upon a piece of the

wall of area unity and side v dt, all mole-

cules in it will strike the part of the wall

within the cylinder in the time-element dt\ the volume of the

cylinder is ^dt, hence the number of collisions per unit surface

and unit time, ^Uy and the total momentum transferred 2m^^ny,

This has first to be summed over all angles of incidence (i.e.

over a hemisphere); the result is obviously the same as one-half

of the sum over the total sphere, namely

2m 2 = 2m

where is the number of molecules per unit of volume, with a

velocity of magnitude v (but any direction). Now the ‘principle

of molecular chaos’ is used according to which

p = -2 _

Hence the last expression is equal and the pressure is
O

finally obtained by summing over all velocities

(
1

)

The total (kinetic) energy in the volume V is

u =

hence one obtains the equation (6.1) of the text,

Vp = IU.

Now one can apply the considerations ofAppendix, 9, using the

experimental fact expressed by Boyle’s law (that all states of a
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gas at a fixed empirical temperature ^ satisfy pV = const.).

Then one obtains

pV = BT, C7 = |i?T, (2)

as stated in (6.2) of the text.

12. (VI. p. 50.) Statistical equilibrium

If H depends only on p, not on x, the equation [H, /]
reduces to _

.

(
1

)

and is equivalent to the set of ordinary differential equations

— = ^ . (2 )

Px Py Pz

By integrating these (p is constant) one obtains the general

solution of (1) as an arbitrary function of the integrals of (2),

““'‘y /-Kp.m), (3)

where m == XAp. (4)

Now if the gas is isotropic, / can depend only on p^ and
and if it is to be homogeneous (i.e. all properties are independent

of x), cannot appear; hence

/ = (5)

as stated in the text.

13. (VI. p. 51.) Maxwell’s functional equation

To solve the equation (6.10) it suffices to take ig — 0; putting

ii = X, = I/,
one has

/(x+y) = ^(x)<f>(y). (1)

Differentiating partially with respect to a;,

f'(x+y) = <f>'{x)(f>{y), (2)

and dividing by the original equation

f'{x+y) __

f{.x+y) <l>(x)

'

(3)
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Now, the right-hand side is independent of and the left-hand

side cannot therefore depend on y\ hence, putting a? = 0,

f\y)

fiy)
-A (4)

where j8 is a constant. By integration,

f{y) = ae-^y = (6)

which is the formula (6.11) of the text.

14. (VI. p. 52.) The method of the most probable distribu-

tion

We have to determine the probability of a distribution of

equal particles overN cells, where ofthem are in the first cell,

Tig of them in the second, etc. ~ n). To do this

we first take the particles in a fixed order; then the probability of

distribution (ti^, Tig,..., %) is, according to the multiplication law,

cojCUi 0)1... o)ga)g...o)g 0)^0)^, ,.cx)^ — a)iio)2* ...o)^,

Til Tig 71^

where o)i,o)g,...,o)jy^ are the relative volumes of the cells, nor-

malized so that o)i-fo)2+.-+ct)iv == !• To obtain the probability

asked for, we have to destroy the fixed order of the particles. If

one performs first all ti! permutations, one gets too many cases,

as all those distributions, which differ only by permuting the

particles in each cell, count only once. Therefore one has to

divide ti! by the number of all these permutations inside a cell,

that is by Tii!Ti2 l...Tijy! The total result is the expression (6.16)

P(tIi, Tig,..., Tljy) — Tl!

Tli!Tlg!...Tljy!
.0)^^ (

1
)

which is nothing but the general term in the polynomial expan-

sion

2 P(%,w-g,...,Tijy) 2
nirij.

ni...njg

We now deal with the approximation of n! by Stirling’s

formula. The simplest way to obtain it is this: write

log(»!) = log(1.2.3...») = logl4-log2+log3+...+log»
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and replace the sum j log 1c by the integral

n

log a: dx = n(logn— 1).

b

A more satisfactory derivation is the following: One can represent

n\ by an integral and evaluate it with the help of the so-called

method of steepest descent, which plays a great part in the

modem treatment of statistical mechanics due to Darwin and
Fowler (see p. 54). The approximate evaluation of n\ may serve

as a simple example of this method.

If the identity

doc

is integrated from 0 to oo and the abbreviation (F-function)

00

r(K.+ l) = J
e~^x'^dx {n> —1), (2)

0

used, one obtains r(«.+ l) = nTin). (3)

As r(l) = 1, one has

r{2) = 1 . r(i) = 1, r(3) = 2r(2) = 1.2,

r(4) = 3r(3) =1.2.3,

and in general r(n+l) = »!. (4)

The integral (2) can be written

CO

r(w+l) = J
f{n,x) = —x+nlogx. (5)

0

The function /(n, a;) (hence also the integrand) has a maximum
where

/'(a:) = -l+J = 0,

i.e. at a: = », and

/(») = —n+»log».
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The expansion of f(x) in the neighbourhood of the maximum
x = n is therefore

f{x) = --n+nlogr^—— (a;—n)2+...,
zn

and one has
00

r(7i4-l) = e-n+n\ogn
J

1+ . .
.
) da;,

0

where the dots indicate terms of higher order which can be easily

worked out. If these are neglected the integral becomes
00 00 J,

J
er^x-n)*l2n _

J
0 —n

for large n. Hence

n! = r(7i+l) = ^J(27rn)e~^n^-i-.., (6)

and log/i! = nlogn—7i+Jlog(27rn)+.**, (7)

where the highest terms agree with the previous result.

Thus the logarithm of the probability F can be written

logP = 2 ^,(Ws)+const., (8)
8

where = w«(logWg—logwj. (9)

(8) and (9) are, for equal a>’s, equivalent to formula (6.17) of

the text.

One has to determine the maximum of log P with the con-

ditions (6.13), (6.14), of the text, namely

2 2 ( 10)
«“1 a=-l

Without using the special form of one obtains

^-A+fe (U)

where A, j8 are two Lagrangian factors. For the special function

(9) one has „

,

^ = logajg—log«,— 1, (12)
dUg

and if this is substituted in (11) with A+1 = —a,

log». = logto,+a—^6^,

that is, for equal a>’s, the formula (6.18) of the text.

( 13 )
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Ifone has two sets ofsystemsA and B, as discussed in the text,

there are three conditions

2^(A) jyU) y(B)

2 2 1 2 = U,
r=-l r=l r«l r—

1

and therefore instead of two multipliers three, j8 ;
and

one obtains, with 1 = 1 = the formulae

(6.19) of the text, which show that p is the equilibrium para-

meter, a function of the (empirical) temperature i? alone.

In order to see that p is reciprocal to the absolute tempera-

ture one must apply the second theorem of thermodjmamics,

which refers to quasi-static processes involving external work
(for instance by changing the volume).

By an infinitely slow change of external parameters ai,a2 ,...,

the energies of the cells will be altered and at the same time

the occupation numbers n/, the total energy will be changed by

dU = ^da„+ 2

while the total number of particles is unchanged,

dn == ^ dn^ == 0 .

r

The first term in (14) represents the total work done

dW -n2fod<i„,
a

where L -2n^ n.
da„

(14)

(16)

(16)

(17)

is the average force resisting a change of a„

term in (14) dQ = 2^rdn,

Then the second

(18)

must represent the heat produced by the rearrangements of the

systems over the cells.

The corresponding change of logP is obtained from (8)

and (11),

dlogP = ^^dn^ = 2 i>^+P^r)dnr,

r
**

**

which in virtue of (15) and (18) reduces to

dlogP = pdQ. (19)
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This shows that jSdQ is a total differential of a function depend-

ing on that ^3(1?) is the integrating factor.

Hence the second law of thermod3Tiamics is automatically

satisfied by the statistical assembly, and one has, with the

notations of section V,

dQ ~ Xd<f), with A = 3, ^ = logP;
P

then (5.25) and (5.26) give, with C == 1/i, logO = 0, O == 1,

and (5.27) ,

r = S-8o==k<f> = klogP. (20)

k is called Boltzmann’s constant.

Now the change of energy (14) becomes

dU= ^n^f,da,+ TdS. (21)
a

If one has a fiuid with the only parameter = F, the corre-

sponding force is the pressure

p = nA^-^ (
22 )

r

and one obtains the usual equation

dU=-pdV+Td8. (23)

Returning to the general expression (21) one sees easily that

one can express all quantities in terms of the so-called partition

function (or ‘sum-over-states’)

Z = (24)

For, from (10) and (13),

» = e“ J = e“Z,
r

hence a = logn—log Z.

Now one has, after simple calculation, from (19), (20) with

(8), (9), (17)
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and du— — '^fgda„-\-Tds. (26)
a

The simplest thermodynamical function, from which all

others can be derived by differentiation, is the free energy,

f=zu—T8 == --kTlogZ,

df=-lf,da,-8dT-j

hence /„ =

while 8 = —dfjdT leads back to the second formula (25).

The application to ideal gases may be illustrated by the simp-

lest model where each particle is regarded as a mass point with

coordinates x,y,z, momenta Px^Py^Pz^ mass m. Then,

according to Liouville’s theorem, one has to take as cells

elements of the phase space dxdydzdp^dpydp^ and replace the

sums by integrals. The energy is )/2m. Then the par-

tition function (24) becomes

Z = j
<«>
J

dxdydzdp^dp^dp,.

The integration over the space coordinates gives F, the volume.

If one puts yl{^l2m)p^ = ^,..., one has

z = v(^J JJJ
e-^i^+v'H^^didridl

the integration extended for each variable from —oo to + 00 .

The integral is a constant which is of no interest as all physical

quantities depend on derivatives of Z, Hence, with p =
jf == —iTlogZ = —^;TlogF—pTlogiT+const.,

from which one obtains

P = = ^* " = = *iogF+p(iogAr+i),

u = f-\-T8 = fiT+const.

These are the well-known formulae for an ideal monatomic gas:

Boyle’s law, the entropy and energy per atom. The specific

heat at constant volume is

dV
dT

= Ink = |i2,

if n refers to one mole.
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15. (VI. p. 54.) The method of mean values

The method of Darwin and Fowler aims at computing the

mean value of any quantity /(n^), depending on the occupation

number of a cell for all possible distributions

satisfying the conditions

= ( 1 )
r r

that is, the quantity

/(»r) = 2 J’(»l.W2.-,«A')/(Mr). (2)

whereP is the probability ofthe distribution defined

by equation (6.15) or 14, (1).

We consider the function F(z) defined by
(
6 .22 ),

F(z) = (j0iZ^^+ CO2 Z^*+...+ Wj^Z^^, (3)

and assume that a very small unit of energy is chosen so that all

the are positive integers, which may be ordered in such a way
thatcj < €2 < €3 < also, by choosing the zero ofenergy

suitably we can arrange that = 0.

Then we expand {F(z)}'^ into powers of z according to the

multinomial theorem and obtain a series of terms

= P{n^,

by collecting all these termswith the same factor 2^ we obtain all

the P(nj^,n^,...,n^) which belong to the same value of

C/ == 2 «r”r*
r

Now we substitute 1 for each f(n^) in (2 ) and obtain in this

way the total probability of these distributions which have a

given total energy U, in the form:

^
P = coefficient of in {F{z)}^,

This coefficient can be evaluated by Cauchy’s theorem, if 2 is

regarded as a complex variable; one has

where the integral is taken round a closed contour surrounding
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the origin 0 in the 2:-plane. The integral can be evaluated

approximately by the method of steepest descent which we have
already explained, for real variables, in Appendix 14, for the

F-function.

The first step is to express the integrand in the form

0(z) = ?ilogJ'(2;)-'~(?7+l)log2;.

Since

and

F(z) 2
r

both log F{z) and its derivative increase monotonically from a

finite value to cx) as 2 moves along the real axis between 0 and
00 . Also —logs: and its negative derivative 2:“^ decrease mono-
tonically along the same path. Hence 0[z) can have only one

extremum, a minimum, on the real axis between 0 and 00
,
and

this minimum will be extremely steep if n and U are large.

Also let Zq be the point of the real axis where the minimum
happens to be; then at this point the first derivative of 0{z)

vanishes and the second is positive and very large. Hence in the

direction orthogonal to the axis the integrand must have a very

sharp maximum. If we take as contour of integration a circle

about 0 through z^, only the immediate neighbourhood of this

point will contribute appreciably to the integral.

The minimum Zq is to be found as root of the equation

Q\z) = E±1
z

F\z)

F(z)
= 0

, (5)

and one has

O^lz) =

This shows that for large U and n a proportional increase in U
and n will not change the root Zq, while 0''{Zq), which is positive,

can be made arbitrarily large.

5131 M
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Putting z = z^+iy one obtains for the integral (4)

to

— 00

where the terms of higher than second order are omitted and the

limits of integration are taken to be ±oo because of the sharp

drop of the exponential function. This gives

17+ 1 can be replaced by 77, because ofthe smallness ofthe energy

unit chosen; if one puts

^0 = (7)

one has, for N-^co,

F(^o) = 2 = 2 = m. (
8

)

which shows that the function F(z) is equivalent to the partition

function introduced in (14.24), p. 158,

If one now takes the logarithm of (6) the leading terms are

^U+nlogZ.

On the other hand, one has from (5) to the same approximation

U nz,
F'jzp)

P’(Zo)

n dZ
'Zd^

= — dlogZ

If’ (9)

in agreement with (14.25); hence

(10)

Comparison with (14.25) shows that the entropy in this theory

is to be defined by
5 = 715 = Jfclog^^^P, (11)

while in the Appendix, 14, the definition was 8 = klog P, where

P means the maximum value of the probability.

Thus it becomes clear that owing to the enormous sharpness of

the maximum it does not matter whether one averages over all

states or picks out only the state of maximum probability.

In fact, the two methods, that of the most probable distribution

and that of mean values, do not differ as much as it appears.

Both use asjmiptotic approximations for the combinatorial
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quantities: either for each factorial in the probability before

averaging, or for the resultant integral after averaging. The

results are completely identical. Yet there are apostles and dis-

ciples for each of the two doctrines who regard their creed as the

only orthodox one. In my opinion it is just a question oftraining

and practice which formalism is more convenient. The method

of Darwin and Fowler has perhaps the advantage of greater

flexibility. The partition function is nothing but a ‘generating

function’ for the probabilities, and allows the representation of

these by complex integrals. In this way the powerful methods

of the theory of analytic functions of complex integrals can be

utilized for thermodynamics.

16. (VI. p. 56.) Boltzmann’s collision integral

The collision integral (6.24) canbe derived in the following way.

The gas is supposed to be so

diluted that only binary en-

counters are to be taken into

account. Then the relative

motion oftwo colliding particles

has an initial and a flnal straight

line asymptote.

To specify an encounter we
define the ‘cross-section’ as the

plane through a point 0 with a

normal parallel to the relative velocity ^2 ^^o particles

before an encounter and introduce the position vector b in this

plane. We erect a cylindrical volume element over the area dh
with the height |5i

-—^21 particles in this element

having the relative velocity §1*—§2 will pass through dh in time

dt The probability of a particle 2 passing a particle 1 at 0
within the cross-section element dh is obtained from the

product /(I) dXid5i/(2) dx^d^^ by replacing dXg by the volume

of the cylinder |?i—52 I

dhdt^

Every encounter changes the velocities and removes therefore

the particle 1 from the initial range. The total loss is obtained

by integrating over all dh and d!^^:

dx,dl^,dt
jj /{l)/(2)l|i-|,| dhdJi^. (

1
)
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But there are other encounters such that the final state of the

particle 1 is in the element called inverse en-

counters.

If the final velocities of the direct encounters are ^2

laws of collision (conservation of momentum and energy) allow

one to express 51, §1 ^ terms of 5i, %2 two further parameters

(the components of b in the cross-section plane). These relations

are linear in 5i, ?2 may be shortly written

(51, 51) = ^(5i,52), (
2

)

where JS? represents a 6 x 6 matrix. It is obvious that the solu-

tions of these equations for 5i and ^2 id terms of 51 and 51 must
have the same form; that means that == -Sf, so that -2^^ = 1

and \^\ = 1 or
'

' d51d51 = d5id52. (3)

Further, the elementary theory of collisions (conservation of

energy and momentum) implies

l?i-52l = (4)

Hence the number of inverse encounters is

dK,d^,dtjj f'(l)m\%i-%2\ dbd^„ (6)

where /'(I) means 51 being the linear function of

5n 52 given by (2).

Combining (1) and (5), one obtains for the total gain of par-

ticles (1) in dXid%iy per time-element dt,

dx,d^,dt
jj

dhd^,. (6)

This has to be equated to the change of /(I) calculated without

assuming interactions, namely,

® dx,d^,dt = j^_[fi./(l)]j dx^ai^dt. (7)

The results are the combined formulae (6.23) and (6.24) of the

text,

= jj
{/'(l)/'(2)-/(l)/(2)}|§,-5,|dbd§,.

(
8)
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17. (VI. p. 57.) Irreversibility in gases

Assuming no external forces, the Hamiltonian of a particle

is JET = hence Boltzmann’s equation (6.23), or (Appendix,

16.8) reduces to

( 1 )

If now the entropy is defined by (6.25) or, using the velocity

instead of the momentum, by

^ = -*J//{l)log/(l)dXid?i, (2)

one obtains

and substituting df(l)/dt from (1)

-k
JJJJ

{l+log/(l)}{/'(l)/'(2)-/(l)/(2)}x

x\%i-%^\dhdx^d^^d%2. (3)

Here the first integral can be written

and transformed, by Gauss’s theorem, into a surface integral

over the walls of the container,

jdaj 5i.v/(l)log/(l)d?i.

where v is the unit vector parallel to the outer normal of the

surface, dor the surface element.

The inner integral is n times the mean value over all velocities

of 5i.vlog/(l), where n = J
is the number density. But

this average vanishes at the surface which is supposed to be

perfectly elastic and at rest, external interference being excluded

;

for the numbers of incident and reflected particles with the same
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absolute value of the normal component of the velocity, |§.v|,

will be equal.

Hence there remains only the second integral in (3). This can

be written in four different forms, namely, apart from the one

given in (3), where the factor 1+/(I) appears, three others where

this factor is replaced by 14-/(2 )
or 1+/'(1) or l+/'(2). Foritis

obvious that 1 and 2 can be interchanged as the integration is

extended over both points in a symmetric way; and the dashed

variables can be exchanged with the undashed ones as

= 111-?,

I

(see Appendix, 16.3, 4). Hence

x{/'(l)/'(2)-/(l)/(2)}|5i-5,ldb(ix,d|,ci|,

or

dt

Now log is positive or negative according as /'(l)/'(2)

is greater or smaller than/(l)/(2); it has therefore always the

same sign as /'(l)/'(2)—/(l)/(2), and one obtains

(5)

the = sign can hold only if

/'(l)/'(2) = /(l)/(2) (6)

or log/'(l)+log/'(2) = log/{l)+log/(2). (7)

One can express this also by saying that

log/(l)+log/(2) (8)

is a collision invariant.

The mechanics ofthe two-body problem teaches that there are

only four quantities conserved at a collision: the three com-

ponents of the momentum total energy

Hence log / must be a linear combination of these;

log/ = a— (9)

or / =
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This can also be written

/ = (
10)

1
where u = —;rY and a, =

(10) shows that u is the mean velocity. For a gas at rest (in a

fixed vessel) one has therefore u = 0, hence y = 0 and

/ = (
11 )

This is the dynamical proof of Maxwell’s distribution law.

18. (VI. p. 60.) Formalism of statistical mechanics

As said in the text, Gibbs’s statistical mechanics is formally

identical with Boltzmann’s theory of gases if the actual gas is

replaced by a virtual assembly of copies of the system under

consideration. Hence all formulae referring to averages per

particle (small letters) can be taken over if the word ‘particle’

is replaced by ‘system under consideration’. One forms the

partition function (14.24) or (15.8) F(z) == Z(j3), z = e"”^, and
from that the free energy (14.27)

JfcTlogZ, (1)

from which all thermodynamical quantities can be obtained

by differentiation:

6 =
BT'

(
2 )

This formalism includes also the case of chemical mixtures

where the number of particles of a certain type is variable. One
has to know how the quantity Z depends on these numbers;

then the chemical potentials, introduced in Appendix, 8, are

obtained by differentiating/ with respect to the concentrations.

We shall mention only the method of the ‘great ensemble’ which

can be used in this case.

In the theory of non-ideal gases the Hamiltonian splits up
into a sum

1
^

^ 2 (3)

and the partition function into a product

X
J J

exp{-j8C7(Xi,..., Xjv)} dx^dx^,.
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The first integral can easily be evaluated and gives

(27rm/j3)3^/2 _ (27rmjfcT)3^/2;

hence one has n rn\o\Tit%^

where
Z == {27rmkTf^l^Q,

as in (6.35) of the text.

The method of Ursell for the evaluation of this integral applies

to the case where the potential energy is supposed to consist of

interaction in pairs between the centres of the particles,

<I>« = 3>(ry). (6)
1>'J

Then one can write

e-pu (7)
i>j i>l

where /y = 1— (8)

The product (7) can be expanded into a series

== 1~
h>%

and the problem of calculating Q is reduced to finding the

‘cluster integrals’

J—J J ...J
..., (10)

which are obviously proportional to . Hence one

obtains for QV~^ an expansion in powers of V~^ which holds

for small interactions (jSO^^ small implies small):

0 = '"'(»-F+p—) <")

Then (1) and (4) give

/ = -*Tj^log{2,7mi:T)+logQj, (12)

hence

8V^ dV ~ V \ F+ “7’ ^ ^

where = a/N, B = {ofl—2p)/N,,... That is the formula (6.36)

given in the text.

The actual evaluation of the cluster integrals is extremely

difficult and cumbersome. The analytical properties ofthe power
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series (11) have been carefully investigated by J. Mayer, and by
myself in collaboration with K. Fuchs. The theory has been

generalized so as to include quantum effects by Uhlenbeck,

Kahn, de Boer. Here is a list of publications:

H. D. Ursell, Proc. Camb. Phil. Soc. 23, p. 685 (1927).

J. E. Mayer, J. Chem. Phys. 5, p. 67 (1937).

J. E. Mayer and P. J. Ackermann, ibid. p. 74.

J. E. Mayer and S. F. Harrison, ibid. 6, pp. 87, 101 (1938).

M. Bom, Physica, 4, p. 1034 (1937).

M. Bom and K. Fuchs, Proc. Roy. Soc. A, 166, p. 391 (1938).

K. Fuchs, ibid. A, 179, p. 340 (1942).

B. Kahn and G. E. Uhlenbeck, Physica, 4, p. 299 (1938).

B. Kahn, The Theory of the Equation of State. Utrecht Dissertation.

J. de Boer and A. Michels, Phyaica, 6, p. 97 (1939).

S. F. Streeter and J. E. Mayer, J. Chem. Phya. 7, p. 1025 (1939).

J. E. Mayer and E. W. Montroll, ibid. 9, p. 626 (1941).

J. E. Mayer and M. Goeppert-Mayer, Statistical Mechanical J. Wiley
& Sons, Now York (1940).

J. E. Mayer, J. Chem. Phya. 10, p. 629 (1942).

W. G. MacMillan and J. E. Mayer, ibid. 13, p. 276 (1945).

J. E. Mayer, ibid. 43, p. 71 (1939); 15, p. 187 (1947).

H. S. Green, Proc. Roy. Soc. A, 189, p. 103 (1947).

J. de Boer and A. Michels, Phyaica^ 7, p. 369 (1940).

J. de Boer, Contrihutiona to the Theory of Compreaaed Oases. Amster-

dam Dissertation (1940).

J. Yvon, Actualitis acientifiqueset industrielles, 203 yp, 1 (1935); p. 542

(1937) ; Cahiers de physique, 28, p. 1 (1945).

19. (VI. p. 62.) Quasi-periodicity

The state of a mechanical system can be represented by a

point in the 6iV'-dimensional phase space p, q, and its motion by
a single orbit on a ‘surface’ of constant energy in this space.

Following this orbit one must come very near to the initial point;

the time needed will be considerable, in the range of observa-

bility. This is the quasi-period considered by Zermelo. Yet
there are much smaller quasi-periods if one takes into account

that all particles are equal and indistinguishable; the gas is

already in almost the same state as the initial one if any particle

has come near the initial position of any other. Then the orbit

defined above is not closed at all, yet the system has performed

another kind of quasi-period. These periods are presumably

small; I cannot give a mathematical proof, but it seems evident

from the overwhelming probability of distributions near the
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most probable one. Einstein has this quasi-period in mind. It

is certainly extremely short in the scale of observable time-

intervals, and one can therefore say that the representing ‘point’

sweeps over the whole energy surface if this point is defined

without regard to the individuality of the particles (i.e. if an

enormous number of single points corresponding to permutation

of all particles are regarded as one point).

20. (VI. p. 63.) Fluctuations and Brownian motion

The statistical conception of matter in bulk implies that

spontaneous deviations from equilibrium are possible. There are

several different types of problems, some of them concerned

with the deviations from the average or fiuctuations found by
repeated observations, others with actual motion of suspended

visible particles—the Brownian motion.

The simplest case of fluctuations is that of density, i.e. of the

number of particles in a small part cdV of the whole volume V,

One has in this case two cells of relative size co and 1— o), and the

probability of a distribution %,n2 ==n--ni, is according to

(6.15) or (14.1)

The expectation value of found by repeated experiments is

ni=0
or

n

rit = no) 7
(«— 1)!

According to the binomial theorem this reduces to

= nw, (
2

)

as might be expected.

In order to calculate nf we note that %(Wi~- l ) can be found in

exactly the same way as namely,

%(%—!) = 2
ni—0

n

»(n— l)co* y {n-2)\
:X
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whence ni(ni— 1) = n(n— l)a>*.
(3 )

Therefore

= %(%—!)+% = 7i(?i— l)co^+na>.
(4)

so that the mean square deviation is

(A%)2 = (%—

=

nco—na>^ = nco(l— co). (5)

If oi is a small fraction, one obtains the well-known fluctuation

formula for independent events

(Awi)^ = (6)

This is directly applicable to the density fluctuation of an ideal

gas and can be used to explain the scattering of light by a gas,

as observed for instance in the blue of the sky (Lord Rayleigh;

Atomic Physics, Appendix IV, p. 280).

There are also fluctuations of other properties of a gas. As
the state of a fluid is determined by two independent macro-

scopic variables (p, V for instance), it suffices to calculate the

fluctuation of one further quantity. The most convenient one

is the energy.

The following consideration holds, however, not only for ideal

gases, but for any set of independent equal systems of given

total (or mean) energy; it supposes only that the distribution

is canonical.

Then all averages can be obtained with the help of the par-

tition function (14.24) or (15.8),

= = (7)

In particular the mean energy is (14.25)

. Z' dlogZ
“ ~ Z~ ’

r

and the mean of its square

±
2

(8)

(9)
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Hence the mean fluctuation of energy

(A£)2 = (€- 6)2 =

or with (8)

(Ae)2 =

ZZ'—
Z2

du

d^'
(
10)

If the mean energy is known as a function of temperature,

hence of jS, one obtains its fluctuation by differentiation. For
example, for an ideal gas one has u = c^T = (cJk)P~^, hence

(Ac)^ = c^kT^ = (kjcju^. Another application, to the fluctua-

tion of radiation, is made in section VIII, p. 79.

If one washes to determine the fluctuations of a part of a body
which cannot be decomposed into independent systems, these

simple methods are not applicable.

Einstein has invented a most ingenious method which can be

appHed in such cases. It consists in reversing Boltzmann’s

equation 8 = klogP, (11)

taking S' as a known function qf observable parameters, and
determining the probability P from it,

P = (12)

Assume the whole system is divided into N small, but still

macroscopic parts and Att^ is the fluctuation of energy in one of

them; then one has for the entropy in this part

If the whole system is adiabatically isolated one has

^
AWf = 0.

By adding up all fluctuations one gets for the entropy

(13)

where the abbreviations

fcy = — (14)
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are used. According to the second law of thermodynamics one

has for constant volume

^ dU dS 1

hence

^ 2k\dUyo 2k8U\Tf

1 dT\T) 1

2k djl
~ 2kT\’

8T

(15)

where — dUjdT is the specific heat for constant volume.

Substituting (13) in (12) one obtains approximately

P = Poe-y?^?;

hence the mean square fluctuation ofenergy in one (macroscopic)

cell is

= If = = -|-log
J

c-yff di, =
r J/- —00

J
e-vii

— 00

or (A%~)^ = kT^%. (16)

This result is formally identical with that for an ideal gas ob-

tained above, yet holds also if is any function of T,

In a similar way other fluctuations can be expressed in terms

of macroscopic quantities.

We now turn to the theory of Brownian motion which is also

due to Einstein. His original papers on this subject are collected

in a small volume Investigations on the Theory of the Brovmian

Movement, by R. Fiirth, translated by A. D. Cowper (Methuen

& Co. Ltd., London, 1926) and make delightful reading. Here

I give the main ideas of this theory in a slight modification

formulated independently by Planck and Fokker.

Let f{x, t) dx be the probability that the centre of a colloidal

(visible) particle has an a:-coordinate between x and x-\-dt at

time t. The particle may be subject to a constant force F and
to the collisions of the surrounding molecules. The latter will

produce a friction-like effect; ifthe particle is big compared with

the molecules, its acceleration may be neglected and the velocity
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component in the a:-direction assumed to be proportional to the

^ = BF, (17)

where B is called the ‘mobility\ Apart from this quasi-continu-

ous action, the collisions will produce tiny irregular displace-

ments which can be described by a statistical law, namely, by
defining a function <f>(x) which represents the probability for a

particle to be displaced in the positive a;-direction by x during a

small but finite interval of time r.

Then one obtains a kind of collision equation (which is simpler

than Boltzmann’s in the kinetic theory of gases, as no attempt

is made to analyse the mechanism of collision in detail) : The con-

vective increase of/(a;, t) in the time-interval t, t
df

dt

is not zero but equal to the difference ofthe effect ofthe collisions

which carry a particle from x^ to x and those which remove the

particle at x to any other place x^:

r

00

= /
dxi

—00

= /
dx'. (

18)

if>{x) may be normalized to unity and the mean of the displace-

ment and of its square introduced by
00 00 00

J
^(x) dx = \,

J
x<f>(x) dx = Ax,

J x^<f>{x) dx = (Ax)*.

—00 — 00 — 00

(19)

Further it may be supposed that the range of ^(x) is small; then

one can expand/(x—x') on the right-hand side of (18) and obtain

a differential equation for f{x,t) which, with (17) and (19), can
be written

Bf

8t
+

Ax\0/ l(Ax)*S*/

T j dx 2 T 0X*
= 0, (20)

Let us assume that the irregular action of the collisions is

symmetric in x,<f>{x) = <ft{—xy, then Ax = 0.
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Consider first statistical equilibrium; then

BF^-^(Ax)^^ = 0.
dx 2t ' dx^

(
21

)

Now the coordinate x of the colloidal particle can be included in

the total set of coordinates of the whole system, if a term —Fx
is added to the Hamiltonian, so that the canonical law of distri-

bution contains the factor = IjkT, Hence the solution

of (21) must have the form

/ = /oC^^*, (22)

so that ^ = jSf—
dx^ dx

If this is substituted in (21), one finds

BD = (Axf

2t
kTB. (23)

We consider now the motion of the particles without an

external field {F = 0), under the action of the collisions only.

Then (20) reads

Jt

~ (24)

This is the well-known equation of diffusion. Einstein’s main
result consists in the double formula (23) which connects the

mean square displacement with the coefficient of diffusionD and

with temperature and mobility.

If the particle is known to be at a given position, say a; = 0,

at ^ = 0, the probability of finding it at x after the time t is the

following solution of (24):

(25)

the mean square of the coordinate, or the ‘spread’ of probability

after the time t is found by a simple calculation:

{Aa:(<)}* = J
xY(x, t) dx = 2Dt, (26)

—00

which for < = T is equal to the mean square displacement (A®)*

given by (23).

These formulae can be used in different ways to determine
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Boltzmann’s constant or Avogadro’s numberN = R/k (where

jR is the gas constant per mole), i.e. the number of molecules per

mole. A static method consists in observing the sedimentation

under gravity of a colloid solution; then F = —mgr, where m is

the mass of the colloid particle, and the number of particles

decreases with height according to the law (22), which now reads

n = nQe-<”^olkT)x

In order to apply this formula one has to determine the mass.

For spherical particles m = (47r/3)r®p, where p is the density and
r the radius. The mobility of a sphere in a liquid of viscosity rj

has been calculated by Stokes from the hydrodynamical equa-

tions, with the result ,

6'iTrjr*
(27)

hence it falls under gravity, F == —mg — — (47r/3)r®/[>gr, with

the velocity (17)

-BF
9 rj

As ^ can be measured, r can be found, if p and rj are known, and
finally m.

Another method is a dynamical one. One observes the dis-

placements Ax^, Aa;2 ,..., of a single colloid particle in equal inter-

vals T of time and forms the mean square (Aa:)^. Then using the

same method as just described for determining the radius r,

one finds B from (27) and then k from (23).

In this way the first reliable determinations of N have been

made. Among those who have developed the theory M. v.

Smoluchowski has played a distinguished part, while the first

systematic measurements are due to J. Perrin.

A new and interesting approach to the theory of Brownian
motion may be mentioned: J. G. Kirkwood, J, Chem, Phys,

14, p. 180 (1946); 15, p. 72 (1947).

21. (VI. p. 67.) Reduction of the multiple distribution

function

The total Hamiltonian ofN particles can be split into two
parts, the first being the Hamiltonian of N—

I

particles,

the second the interaction of these with the last particle:

(
1 )
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where is the external potential on the particle i and the

mutual potential between two particles i and j.

Now we apply the operator xn equation for the total

system

dt
(
2

)

From (6.40) we have, for q = N—l,

Xn/n — /n-v

Hence
^

Xn (Xn/n) =
dt dt dt

and

~ Xv[^A’ -i>/iv]+Xiv[(

Here the first term on the right-hand side becomes

XnI^n-i^/n] ” [^N-iy Xn/n] =
since does not depend on the particleN to which the opera-

tor Xn 1‘Gfers. Further,

cXDW 8f^
W0xw •

gW) \
^ axw/

0
;

for if the integration xn performed, the result refers to values

offjsf at infinity of the x^^^and respectively
,
and these vanish

as there is no probability for particles to be at an infinite distance

or to have infinite velocities.

If all this is substituted in (2) one obtains

= [^Ar-i./^-i]+'2'xN[1>«^./iv]- (3)
Ct i= l

Repeating the same process with Xa^--i» Xv-2>*” obtains the

chain of equations (6.44), (6.45) of the text.

22. (VI. p. 68.) Construction of the multiple distribution

function

The fundamental multiplication theorem for non-independent

events ,can be obtained in the following way.

Any event of a given set may have a certain property A or

6181 jy
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not, A. IfB is another property we indicate hyA

B

those events

which have both the properties A and B. ^ ^
Then all events can be split into four groups AB, AB, AB,

IS, with the probabilities Plsy PIb-
The probability ofA is

Pa = Pab+Pab- ( 1 )

On the other hand, ifA is known to occur, the cases AB,AB are

excluded, hence the probability of B is

Pb(^) = Pab _ Pas

Pab+Pab Pa '

or PaPb{^) PABf (2)

which is the multiplication rule; it reduces to the ordinary one

for independent events if p^i^) does not depend on A and is

equal to p^.
This rule can be applied to a mechanical system ofN particles

in the following way.

Let A signify that q particles are in given elements of phase

space; the probability of A can be written

Pa = /« (3)

Let B mean that the element g+1 is occupied. Then AB ex-

presses that all g-f 1 elements are occupied, or

Pab = /a+i (
4 )

Hence ^^(^4), the probability for the element q+l being occu-

pied, if q particles are in given elements, is

^ ^
. (

6)

Pa fq

If this is summed over all possible positions and velocities of the

last particle (g+ 1), the result is equal to the number of particles

excluding the q fixed ones, N’—q; hence, with the normalization

described in the text, (6.42) and (6.43),

i.N-q)f, = (6)

which is the formula (6.40) of the text.

In order to construct the equation (6.44) for the rate ofchange

of/^, one has to introduce a generalized distribution function

which depends not only on the position x and the velocity %
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but also on the acceleration yj of the particles; the probability

for a set of q particles to be in the element

shall be denoted by

One has obviously

(7)

Now the motion of the molecules follows causal laws; hence

the probability/^ of a configuration in x, ^-space at a time t must
be the same as that at the time of that configuration which
is obtained from the first by substituting and
for x<^^ and
Hence (7) leads to

J
(?)

J
g^{t+ht, x+5 8<,?+yj U,r,) d»,(W...(i»i(8)

= J<?!/sr,(<,x,5,Y,)d»,(«..d»,(9),

" / J 1 <«'

The integration in the first two terms can be performed with

the help of (7); that of the last leads to the integral

/
(9)

where the symbol is evidently the mean acceleration.

Hence one obtains from (8)

The final step consists in using the laws of mechanics for deter-

mining The equations of motion are (force

(11 )

Now the function refers to the case where the positions and

velocities of q particles are given, the others imknown. Hence

one has to split the sum (11) into two parts, the first referring to

the given particles, the second to the rest. For this rest the
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probability offinding a particle in a given element g+ 1 is known,

namely (fq+i/fq) hence the average of this sum can

be determined by integrating over i.e. by applying

the operator Xq+v In thisway themean acceleration is found to be

(
12

)

Substituting this in (10), one obtains

8t S{'
.E(‘')4_

0x<*)
’ 'm +

,
1 /ao«>9+i) df.

(13)

which is easily confirmed to be identical with the formulae (6.44),

(6.45) of the text.

23. (VI. p. 69.) Derivation of the collision integral from the

general theory of fluids

From the standpoint of statistical theory a fluid differs from

a solid by the absence ofa long-range order, so that for two events

A and B happening a long distance apart one has, with the

notations of Appendix, 22, == pj^ ,p^\ for instance, for large

|x(2)— one has /2(x(i\ x^^^) = /i(x^i))/i(x<2)), while in solids

this is not the case.

The distinction between liquid and gas is not so sharp and
may even be said to disappear above the critical state. However,

if one is not specially concerned with these intermediate con-

ditions there is a wide region where liquid and gas can be dis-

tinguished by the extreme difference of density. From the

atomistic standpoint this has to be formulated thus:

The potential energy 0(x<^’^, x<^>) between two molecules at

x<^> and x5^’^ decreases rapidly with the distance between their

mass centres, and (except in the case of ions, where Coulomb
forces act) a distance small by macroscopic standards, may
be specified, beyond which the interaction may without error

be assumed to vanish completely. In a liquid proper, there are

many molecules within this distance Tq of a given molecule; in a

gas there are usually none, and the probability that there is more
than one is very small, except near condensation. The neglect
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of this small probability is equivalent to the assumption of

‘binary encounters’ in gas-theory. Green has shown that when
this assumption is made, on taking q = lin the equations (6.44)

and (6.46) of the text,

= (
1

)

A], (2)

one obtains Boltzmann’s collision equations (6.46), (6.47).

To prove this we first work out the expression Si using the

definition (6.5) of the Poisson bracket and of the operator x>

= ^/J ax<i) * 0^(2)
rfx(2W5(2) (3)

(see also 22.13). With the assumption of binary encounters /g

can be expressed in terms offi by using the mechanical laws of

collision.

Consider the motion of two molecules which at time t have

positions x(2), such that |x(2)—

<

rg, and velocities

^(1)^ ^(
2
)^ while at time (< t), when the molecules were last at a

distance Vq from another, their positions and velocities were

and The configurational probabiHty

Ut, x<i), x<2), ^(1), ^(2)) dx(i)dx<2)d5(i)d5(2)

must remain unchanged during the interval {t^, t) as the motion

follows a causal law; also, by Liouville’s theorem, the volume in

phase space is unaltered. Since, as explained

above, molecular events in fiuids which occur beyond the range

of interaction must be considered independent, one has

ut, x<w, §(«, = A{to, x«), A«o, x«), (4)

Next one introduces an approximate assumption which is

always made in gas-theory, that x{)^\ x^^^ may be replaced by
t, x(^> and x^2) right-hand side of (4) (but of course not

^0 ’^^^y small the resulting error is of

microscopic order; nevertheless it is not without importance,

for it allows small deviations from Maxwell’s velocity distribu-

tion law (and other ‘fluctuations’), which would otherwise be

unexplainable, as this law is a rigorous consequence of Boltz-

mann’s collision equation in equilibrium conditions.

It remains to calculate and in terms of 5^2) and



182 APPENDIX

r = which canbe doneby using the canonical equations

ofmotion or their independent integrals (conservation of energy,

momentum, and angular momentum). The resulting formulae

are the same as used in Boltzmann’s theory (see Appendix, 16).

The reduction of can be performed without making use of

explicit expressions. One has only to remark that

/2(«,Xa>,x(2>,5(«,§(2))

now satisfies the equation

[H^,] = 0, (6)

where (6)

is the Hamiltonian of the two particles which are considered to

move independently of all the others. Now (5) becomes

»(?»-?“).| = (7)

We integrate this over then the term with on

the right-hand side vanishes, because there are no particles with

infinite velocities. The other term, with becomes identi-

cal with mS^y according to (3), since

ao m
dr ax^i)*

Hence, with (4),

^ = ff
(5®-?'”)- (8)

where the domain of integration over r may be limited by the

sphere of radius Tq surrounding

This integration can be performed by imagining the sphere to

be partitioned by elementary tubes parallel to the relative

velocity then integrate, first over a typical

tube specified by the cross-section radius b, perpendicular from
the centre ofthe sphere to the tube (see Appendix, 16), and then

over all values of b. At the beginning of the tube, where

(§(2)-|(i)).r < 0,

the interaction between the molecules is negligible, and the

functions giving and 5^2) jn terms of and r reduce to
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and At the end ofthe tube the values and of these

functions have to be calculated from the collision integrals, just

as in Boltzmann’s theory. Thus one obtains

s, = jj (9)

which is identical with (6.47) ofthe text and the collision integral

in (16.8).

This derivation is not more complicated than Boltzmann’s

original one' and is preferable because it reveals clearly the

assumptions made.

24. (VII. p. 72.) Irreversibility in fluids

A rigorous proof of the irreversibility in dense matter from the

classical standpoint seems to be very difficult, or at least ex-

tremely tedious. Green has, however, suggested a derivation

which, though not quite rigorous, is plausible enough and

certainly based on reasonable approximations.

It has tojbe shown that the entropy S defined by (7.1) never

decreases in time, so that

dt

(
1

)

ifAv satisfies the equation

% = (
2 )

which expresses that one particle of unknown position and

velocity is added to a system ofN particles.

IfO is the total potential energy between the N particles and
^(i.jv+1

) between the ith of these and the additional particle,

one has

^ _ V
8t ax<«

(3)

If ^»hia is substituted in (1) the integrals of the first two terms
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vanish on transformation to surface integrals. In the last sum
all terms contribute the same, as and can be assumed to

be symmetric in regard to all particles. Hence

X^ (
4

)

Now the reasoning follows very closely that of Appendix, 23,

where (23.3) was transformed into the integrable expression

(23.8) with the help of the identity
(
23.7).

For this purpose one introduces instead of the velocities of the

two particles (1) and (N+1) appearing explicitly in (4) new
variables, namely their total momentum m, two components

of the relative angular momentum a, and the relative energy u\

m = m(5<i)+5(^+i)), a = |m(x<^+i)-x(i>) a (^c^+D-^W),

w = im|5<^+i)---5<i>|2+(l)(|x(^+i)--x(i>|),

(5)

and regards as a function of these, so that

/iv+i = m, a, w).

Then by direct differentiation it can be verified that

1 p/v+i ^/v+i \ _ (P(iv+i)_.v(i)) (
m\8%W 05(Jv+i)/- ax(»

^

an equation similar to (23.7).

fjf Pd)a.A^+i)

g|(i)"
—
g^d)

' taken from it and substituted in (4), the

only term which does not vanish is found to be

dS _ k

dt ~ (N-1)

X (5(^+W-5a))

.

I ^/n+i \

gx(^+i)/

-J
J(i+log^)x

^In+i
^X^N+1)

m, a,!/; are parameters specifying the trajectories which would
be followed by the particles numbered (1) and (iV^+ 1) ifno other

particles were present. Now one can apply the same reasoning

as in Appendix, 23, partitioning the x^-^+^^-domain by tubes

formed by the trajectories of (iV+l) relative to (1), where

m, a, w are constant, and one can perform the integration with
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respect to first along such a tube, then over all values of

the cross-section b. At each end of the trajectory where the

interaction can be neglected, the function would
factorize into provided no other particle were near to

the particle

This is, of course, not the case; but it seems to be reasonable to

assume that the factorization is at least approximately correct

as the action of the rest will nearly cancel. This is the simplifica-

tion made by Green. It is clear that it could be corrected by a

more detailed consideration; but let us be content with it.

Since the sphere around x^^^ in which is effectively

different from zero is of microscopic dimensions, the values of
x(iv+i) ;^a) need not be distinguished, nor the instants when
these points are reached. The initial velocities must,

however, be determined from the actual final velocities from the

‘conservation’ law, i.e. the definitions (5) for constant m, a,i^:

If the integration in (5) is performed as described, one obtains

where instead of x<^^ the centre x = |(x^^>-|- is introduced.

Here/j^+^^ means which can be replaced, accord-

ing to formula (6.40) of the text, by

^

JJ
^(^+2)) dx<^+2)^^(V+2)^

If this is introduced into (7) one has an integral over 2JV+4

variables, where the integrand contains the factor

By repeating the procedure one can transform (7) into the

expression
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where is the function obtained by replacing the variables

and in by and respectively.

Now one can apply the same transformations as for gases,

as explained in Appendix, 17, which lead from (17.3) to (17.4),

exchanging the dashed and undashed variables, and exchanging

the two groups (1,2,...,A^) and (1+iV, 2+iV’,..., 2^). As it is

obvious that the integral is invariant for these changes, one

obtains

dS _ k

dt ““{2(iyr-~l)!}2

(B)

which makes it clear that dSjdt is positive or zero, and that the

latter happens only if

(
9 )

The solution of this equation leads again essentially to the

canonical distribution. I shall, however, not reproduce the

derivation but refer the reader to the original papers:

M. Bom and H. S. Green, Nature^ 159, pp. 251, 738 (1947).

Proc. Roy, Soc. A, 188, p. 10 (1946); 190, p. 455 (1947);

191, p. 168 (1947); 192, p. 166 (1948).

H. S. Green, ibid. 189, p. 103 (1947); 194, p. 244 (1948).

The reader may compare this involved and, in spite of the

complication, not quite rigorous derivation from classical theory

with the simple and straightforward prooffrom quantum theory

given in section IX.

I wish to add an argument, also due to Green, which shows

that once the increase of entropy is secured the distribution

approaches the canonical one. The latter is given by

In = (
10

)

A is the free energy and E the energy, given by

i-l i=l

u® being the macroscopic velocity at the point

Let the actual distribution be

/n =

(
11 )

(
12)
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one has

jjfydxd^ = N\, jjfj,Edxdl^ = N\U,

where U is the internal energy, and the same holds, of course, for

f%, so that

JJ
f^dxd^ = 0, JJ

f^Edxd% = 0. (13)

Then

fy l^Sfy — (/!v+/iv)^og

= /^Iog/^+/jtf(log/^+l)+^^+ — • (14)

Hence

^ JJ
{Alog/^4-/;,(«-i8^+l)+^+...} dxd5.

Here the terms linear in vanish in virtue of (13), and one

obtains

8 = 8^-
k

2N\
{{Ik
JJ A dxd5+.... (16)

This shows that an increase in the value of 8 requires a decrease

in the average value of |/^ |

and therefore an approach to the

canonical distribution.

25. (VIII. p. 75.) Atomic physics

It seems impossible to supplement this and the following

sections, which deal with atomic physics in general, by appen-

dixes in the same way as before. The reader must consult

the literature; he will find a condensed account of these things

in my own book Atomic Physics (Blackie & Son, Glasgow;

4th edition 1948), which is constructed in a similar way to the

present lectures; the text uses very little mathematics, while a

series of appendixes contain short and rigorous proofs of the

theorems used. For instance, Einstein’s law of the equivalence

of mass and energy is dealt with in Chapter III, § 2, p. 62,

and a short derivation of the formula e = jwc* given in A. Ph.

Appendix VII, p. 288. Whenever in the following sections I

wish to direct the reader to a section or appendix of my other

book, an abbreviation like {A. Ph. Ch. III. 2, p. 52; A. VII,

p. 288) is used.
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26. (VIII. p. 77.) The law of equipartitlon

If the Hamiltonian has the form (8.5), or

H = e+H', e = (1)

where H' does not depend on one has for the average of € in a

canonical assembly

J
ce-^^djpdq

J
ee-P^d^

i,

J
e~P^dpdq

j
e~^^d^

^

as all other integrations in numerator and denominator cancel.

Now this can be written

^ = -|logZ, Z=je-f-d(. (
2

)

K the integration variable -q = ^(jSa/2)^ is introduced one gets

Z = p-iA,

where w4 is a constant. Hence logZ = const. — ^logjS and

i = 5
= (3)

in agreement with (8.6).

27. (VIII. p. 91.) Operator calculus in quantum mechanics

The failure ofmatrix mechanics to deal with aperiodic motions,

continuous spectra, was less a matter of conception than of

practical methods. An indication of using integral operators

instead of matrices is contained in a paper by M. Born,

W. Heisenberg, and P. Jordan, Z.f, Phys, 35, 557 (1926), which

follows immediately after Heisenberg’s first publication. The
idea that physical quantities correspond to linear operators in

general acting on functions was suggested by M. Bom and

N. Wiener, Journ, Math, and Phys, 5, 84 (1926) and Z, /. Phys.

36, 174 (1926), where in particular operators of the form

T

S'- = J
-T

were used. Here the kernel q{tyS) is a ‘continuous matrix’, also
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introduced by Dirac. This paper contains also the representation

of special quantities by differential operators (with respect to

time) which satisfy identically the commutation law between
energy and time Et—tE = ifi.

SchrOdinger’s discovery, which was made quite independently,

consists in using a representation where the coordinates are

multiplication operators and themomenta differential operators,

so that the commutation laws

are identically satisfied. This opened the way to finding the

relation between matrix mechanics and wave mechanics and
to the later development of the general transformation theory of

quantum mechanics which is brilliantly represented in Dirac’s

famous book.

The early development of quantum mechanics as represented

in text-books has become rather legendary. To mention a few

instances: the matrices and the commutation law = 1

which are -traditionally called Heisenberg’s, are not explicitly

contained in his first publication: W. Heisenberg, Z, f. Phys.

33, 879 (1925); his formulae correspond only to the diagonal

terms of the commutator. The complete formulae in matrix

notation are in the paper by M. Born and P. Jordan, Z,f, Phys,

34, 858 (1925). Further, the perturbation theory of quantum
mechanics, traditionally called SchrOdinger’s, is contained

already in the next publication of Heisenberg, Jordan, and

myself (quoted at the beginning), not only for matrices, but also

for vectors on which these matrices operate, and not only for

simple eigenvalues, but also degenerate systems. The only

difference of Schr5dinger’s derivation is that he starts from a

representation with continuous wave functions which he aban-

dons at once in favour of a discontinuous one (by a Fourier

transformation)

.

28. (IX. p. 94.) General formulation of the uncertainty

principle

The derivation of the most general form of the uncertainty

principle can be found in my book {A, Ph, A. XXII, p. 326).

As it is fundamental for the reasoning in these lectures, I shall

give it here in a little more abstract form.
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We assume that for a complex operator C = A+iB and its

conjugate C* = A—^iB the mean value of the product CC* is

real and not negative:

CG* > 0
, (

1
)

where the bar indicates any form oflinear averaging, as described

in the text. Then writing XB instead of B, where A is a real para-

meter, one has

(A+iXB)(A-iXB) = A^+m^^ri[A7^X > 0, (2)

where the abbreviation (9.4)

[A,B] = ^{AB-BA) (3)

is used. As the left-hand side of (2) is real and also the first two

terms on the right, it follows that [A, B^ is real. The minimum
of the quadratic expression in A, given by (2), occurs when

2 £2 ’

and it is equal to A^—% [4^1
. ^ o.

*2
Hence A*

. ^ ^ [A
, Bf. (4)

Now replaceA byA—A and Bhy B—B. AsA , 5 are numbers
and commute with A and B, the commutator [A, H] remains

unchanged. Putting, as in (9.2),

8A = {(A -A)*}*. SB = {{B-Er}*.

one obtains from (4) the formula (9.3) of the text,

SA.SH^Ilpr^l, (6)

and as [?,p] = 1, especially (9.5),

Bp.8q>l. (6)

This derivation reveals the simple algebraic root of the uncer-

tainty relation. But it is not superfluous at all to study the

meaning of this relation for special cases; simple examples can
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be found in A. Ph. A. XII, p. 296, A. XXXII, p. 367, and in

many other books, for instance, Heisenberg, The Physical

PriThciples of the Qvnntum Theory,

29. (IX.p.97.) Dirac’s derivation of the Poisson brackets
in quantum mechanics

It is fashionable to-day to represent quantum mechanics in an
axiomatic way without explaining why just these axioms have
been chosen, justifying them only by the success. I think that

no real understanding of the theory can be obtained in this way.

One must follow to some degree the historical development and
learn how things have actually happened. Now the decisive

fact was the conviction held by theoretical physicists that many
features of Hamiltonian mechanics must be right, in spite of the

fundamentally different aspect of quantum theory. This con-

viction was based on the surprising successes of Bohr’s principle

of correspondence. In fact, the solution of the problem consisted

in preserving the formalism ofHamiltonian mechanics as a whole

with the only modification that the physical quantities are to be

represented by non-commuting quantities.

If this is accepted, there is a most elegant consideration of

Dirac which leads in the shortest way to the rule for translating

formulae of classical mechanics into quantum mechanics. It

starts from the fact that classical mechanics can be condensed

into the equation

|-[^,/] = 0
. (

1
)

which any function/(<,g',^3) representing a quantity carried by
the motion must satisfy. Here the Poisson bracket is used

ep, dq,)
(2 )

If (1) is to be generalized for non-commuting quantities, it is

necessary to consider how the Poisson bracket should be trans-

lated into the new language.

Dirac uses the fact that these brackets have a series of formal

properties, namely

[fc] = 0, (3)
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where c is a constant ; further

and finally

[^1+ ^2. ’?] = [ll. ’?]+ [^2. ’?].

[^. ’?l+ ’?2] = [^. ’?l]+ [^. V2I

[^1^2. V] = [^1. ’?]^2+^'l[^2. ’?].

[^. ^ ’?2] = [^1. ’?l]»?2+ ’?l[^l. Vi]-

(4)

(5)

Here the factors are written in a definite order, though in

classical mechanics this does not matter. We have t^o do so if we
want to use these expressions for non-commuting quantities,

and the rule followed is simply to leave the order of factors un-

changed.

The question is, What do the brackets mean in this case ? To see

this, we form the bracket Vi V2] ways, using the two

formulae (5) first in one order, then in the opposite one. Then

[^1 ^2. Vl Vi]
=

[^x. ^l ’?2]f2+^l[^'2. Vl Vi]

= {[^X> Vl]Vi+ Vl[il’ ’?2]}^2+^l{[^2. ’?l]’?2+’?l[^2. •^2]}

= [^1> ’?l]’?2^'2+ X?l[ll, %]^2+ ^l[^'2. '»?l]’?2-b^l ’?l[^2. Vi]

and in the same way

[^1 Vl V2] = [^1 ^29 Vl]V2~^ Vi[^i ^2> ^2]

= [^1 . ’7i]^2’72+Ii[^2. ’?i]^2+^i[^1. Vi]^i+Vl^l[^i> Vi]-

Equating these two expressions one obtains

[^l>r/l](^2’?2
—

^

72 ^2 ) = (^X^?!— ^iM^2.’?2]- (6)

As [^1, 7^1]
must be independent of ^2> V2 vice versa, it follows

^x Vl- Vl ii = ^[^X. ’Jx].

J

^iVi—Viii = ^[l2.’72].

where A is independent of all four quantities and commutes with

^1— Vl ^1 ^2 V2~~' V2 ^2* Hence A is a number. That it must
be purely imaginary, A = ifi, cannot be derived in such a formal

way; but it follows from considerations like those used in the

previous appendix, where it is shown that a reasonable definition

of averages implies (28.3) that

U>v] = —^(h—v^) (8)

is real.- Thus it is established that the Poisson brackets in
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quantum theory correspond to properly normalized commu-
tators.

If one inserts in the classical expression
(
2 ) for | and 17 a

coordinate or a momentum, one finds

where 8^ = 1
,
8^^ = 0 for r

The same relations (9) must be postulated to hold in quantum
mechanics. Jn this way the fundamental commutation laws are

obtained.

30. (IX. p. 100.) Perturbation theory for the density matrix

We consider the problem of solving the equation

H = Ho+V, ( 1 )

where the perturbation function V is small.

The method is essentially the same as that used for the

corresponding problem in matrix or wave mechanics.

Assume that A represents the eigenvalues of a complete set

of integrals A of Hq, so that [Aq, A] = 0 and Hq becomes

diagonal in the A-representation; put

Ho(X, A) = E, Ho(X, A') = E\ while A') = 0 for A ^ A'. (
2

)

Introduce instead of p and V the functions a and U given by

p(A,A') = a(A,A')eW«x^-^>

F(A,A') = ?7(A,A')eWftX25-£')<.

Then one has

h ^ Ih da{X,X)
^^E—E')a{X, A')|eW'‘X®-^')',

i dt dt I

(Hop-pHo)(X,X') = (E-E'HX,X')e^^M^-^y

Hence the equation (
1
)
reduces to

= (Ua-oU){X,X')
% dt

= I {C/(A,AXA^ A')-<x(A, A'')C^(A", A')}. (4)

Now assume that a is expanded in a series

a = t7o+^l+ ^2+—

,

o5131

(5)
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where is diagonal and independent of the time and <ti, ag,...

of order 1, 2,... in the perturbation. Then one obtains

= i
£^(A.A'){(7o(A')-ao(A)},

hence ai(A, A') - «(A,A'){<7o(A')-ao(A)}, (6)

where
t i

u(X, A') =
^ J

U(X, A') = F(A, dt. (7)

0 0

It follows for the diagonal elements from (6) that

cti(A,A) = 0. (8)

The next approximation ug has to satisfy the equation

= I2 {t^(^.A''K(A^A')-al(A,A'')C7(A^A')}

= n^ IPiWuiX”, X'){ao(X'')-ao(X'J}-

-«(A,A'')t7(A'',A'){ao(A)-a„(A'')}]

-«(A, {a„(A)-<7o(A'')}j

.

We need only the diagonal elements; for these one has

^
j^^^^|^«(A',A)+«(A,A'')

e«(A",A)

dt
jWA")— ffo(A)}

= ^^
«(A, A')«(A', A){a„(A')-ao(A)},

which gives by integration

cx2(A, A) = J
\u(X, A')

I
Vo(A')-c7o(A)}, (9)

since, according to (7), u(A,A') is hermitian, u(A,A') = 'a*(A',A),

and vanishes for t = 0.

It is seen from (3) that the diagonal elements of p and a are

identical; they represent the probability F(t,X) of finding the
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system at time t in the state A. Now (5), (8), and (9) give, in agree-

ment with (9.25) of the text,

P(<,A) = P(A)+
I

J(A, A'){P(A')-P(A)}+..., (10)

where ^
I

* 2

J(A,A') = 1«(A, A')!^ = p J
F(A,A')c-<«/«)(^-®')'d< . (11)

' 0

When F(A,A') is independent of the time one can perform the

integration, with the result

^(a.a') = 1jf(a,a')i^
(ilh)(E-E')

' (
12

)

Now the function — ^

2-77 ly Try
behaves for large t

like a Dirac 8-function, i.e. one has

/(y)dy->/(0)<,

if the interval of integration Ay includes y = 0 and if i^Ay ^ 1.

Suppose that the energy values are distributed so closely that

they are forming a practically continuous spectrum. Then one

can split the index A into (A, E) and replace the simple summation

in (10) by a summation over A and an integration over E\ the

latter can be performed on the coefficients J{X,E\ X',E') with

the result that the formula (10) is unchanged, if the coefficients

are given by

J(X,X') = ?^\V{X,X’mE-E'), (13)

277 J I

iy
Ay

which combines the equations (9.27) and (9.28) of the text.

As mentioned in the text. Green has found a formula which

allows one to calculate the higher approximations in a very

simple way. This formula is so elegant and useful that I shall

give it here, though without proof (which can be found in the

Appendix I, p. 178, of the paper by M. Bom and H. S. Green,

Froc. Roy, Soc, A, 192, 166, 1948). Starting from the equation

(7) or

u-^U. (14)
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where U is known for a given perturbation F by (3), one forms the

successive commutators

^22 — 'U/Uf ^28 — "^22^ '^'W'22>***j

and from them the expansion

^2 = 1^22 . 2^23
t
^^24

I

2! 3! 4!

(15)

(16)

Ifthe initial condition U2 = 0 for ^ = 0 is added, can be deter-

mined by integrating this series term by term.

Then one forms

"^84 — *^2^2 '^2^2>

and the expansion

'2^36 — '^34^2 '^2 '^84?

i^34
1
^^36

I
^^38

2! 3! 4!

(17)

(18)

from which one can determine % so that 2^3 = 0 for ^ = 0 .

The second suffix I in has been chosen to indicate the power
of V which is involved in the expression; one has == 0(F^‘‘^)

and this decreases rapidly with k when F or ^ are small. This rule

makes it possible to construct in a similar manner.

Then one has the solution of (4)

a = (19)

from which p is obtained by (3).

The explicit expressions for the expansion (5) of cr are

ai = upq—PqU,

0*2 == ^('^Vo Po Po'*^22)>

0^8 == i(u^po—^u^poU+SupoU^—pQU^)+

+ ^{'^('2^22 Po PO '*^22) (%2 Po Po '*^22)^} “t“i(^23 Po Po '*^28)> • * * •

(20)

These formulae will be useful for many purposes in quantum
theory. Concerning thermodynamics, the third-order terms will

have a direct application to the theory of fluctuations and
Brownian motion. The customary theory derives these pheno-

mena from considerations about the probability of distributions

in an assembly which differs from the most probable one. The
theory described here deals with one single system with the

methods of quantum mechanics (which allows anyhow only



APPENDIX 197

statistical predictions); deviations from the average will then

depend on higher approximations. It can be hoped that this idea

leads to a new approach to the theory of fluctuations in quantum
mechanics.

31. (IX. p. 112.) The functional equation of quantum
statistics

The equation (9.37),

• P(^;a)+jB(2)) = P,(A(i))P2(A(2)),

where A^^^ depends on but not on and A^^^ vice versa, is

obviously of the form

f{x+y) = Ux)4>{y)

treated in Appendix, 13, and has as solution general exponen-

tial functions; hence the distribution for all three systems is

canonical.

32. (IX. p. 113.). Degeneration of gases

The theCry of gas degeneration is treated in my book Atomic

Physics, but in a way which appears not to conform with the

general principles of quantum statistics as explained in these

lectures. According to these one always has in statistical equili-

brium canonical distribution, P = while the presenta-

tion in A . Ph, gives the impression that, by means of a modified

method of statistical enumeration, a different result is obtained.

This impression is only due to the terms used, which were those

ofthe earlier authors (Bose, Einstein, Fermi, Sommerfeld), while

in fact there is perfect agreement between the general theory

and the application to gases. A simple and clear exposition of

this subject is found in the little book by E. SchrOdinger,

Statistical Thermodynamics (Cambridge University Press, 1946).

I shall give here a short outline of the theory.

In classical theory an ideal gas is regarded as a system of inde-

pendent particles. In quantum theory this is not permitted,

because the particles are indistinguishable. If and

^2(x^^^), or shortly ^i(l) and wave functions of two
identical particles with the energies E^ and E^, the Schrbdinger

equation for the system of both particles, without interaction,

has obviously the solution i^i(l)j/r2 (
2

) with the energy Ex+E^,
but as the particles are identical there is another solution
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belonging to the same energy, namely «/fi(2)i/r2(l). Hence any

linear combination of these is also a solution. Two of these,

namely the symmetric one and the anti-s3nnmetric one,

^J1,2) = ^,(1)^,(2)~^,(2)^2(1)

have a special property: the squares of their moduli, and

are unchanged if the particles are interchanged. One can

further show that they do not ‘combine\ i.e. the mixed inter-

action integrals (matrix elements) vanish,

J Uh 2)AUh 2) = 0, (2)

for any operatorA symmetric in the particles. Hence they repre-

sent two entirely independent states of the system; each state

being characterized by two energy-levels of the single particle

occupied, without saying by which particle.

The same holds for any number of particles. If

are the energies of the states of the isolated particles, the total

system (without interaction) has not only the eigenfunction

«/fi(l)02(2)...^^(n) belonging to the energy E^-\-E2+---+E^ but

all functions P«/fi(l )(/r2(2)...i/r^(n), whereP means any permutation
of the particles, hence also all linear combinations of these.

There are in particular two combinations, the symmetric one

and the antisymmetric one.

^g(l,2,...,w) = ^
P^i(l)^2(2)...^„(ra),

(-f for even, — for odd permutations),

(
3 )

which have the same simple properties as described in the case

of two particles: i/r^ remains unaltered when two particles are

exchanged, while (which can be written as a determinant)

changes its sign; hence and remain unchanged.

Further, the two states do not combine, a fact expressed by
formula (2).

The functions and describe the state of the n-particle

system in such a way that the particles have lost their indi-

viduality; the only thing which counts is the number of particles

having a definite energy-level.

Experiment has shown that this description is adequate for all
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particles in nature; every type of particle belongs either to one

or the other of these two classes.

The eigenfunctions ofelectrons belong, in view ofspectroscopic

and other evidence, to the antisymmetric type
;
hence they vanish

if two of the single eigenfunctions identical, i.e. if two
particles are in the same quantum state. This is the mathe-

matical formulation of Pauli’s exclusion principle. Nucleons

(neutrons or protons) and neutrinos are of the same type; one

speaks of a Fermi-Dirac (F.D.) gas. Photons and mesons,

however, and many nuclei (containing an even number of

nucleons) are of the other type, having symmetric eigen-

functions; they form a Bose~Einstein (B.E.) gas.

In both cases the total energy may be written

E = + (4)
B

where e^, eg,... are the possible energy-levels ofthe single particles

and ^1 ,
^2 ,... integers which indicate how often this level appears

in the original sum JSJj-f (where each was attri-

buted to ofie definite particle).

The sum of these occupation numbers

»
l+»2+ .- = 2 = » (5)

B

may be given or it may not. The latter holds if particles are

absorbed or emitted, as in the case of photons. For a B.E. gas,

including the case of photons, there is no restriction of the

while for a F.D. gas each energy-value can only appear once,

if it appears at all. Hence one has the two cases

.
(B.E.) 71, = 0,1, 2, 3,...

(F.D.) 7^, = 0,1.

Now we apply the general laws of statistical equilibrium, which

have to be supplemented by the fundamental rule of quantum
mechanics that each non-degenerate (simple) quantum state has

the same weight. (This is implied by the equation (9.14) of the

text which shows that the diagonal element ofthe density matrix

determines the number of particles in the corresponding state.)

As we have seen in Appendix, 14, it suflSces to calculate the

partition function Z (14.24), p. 158, with all = 1,

Z =z 2 (7)
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where the sum is to be extended over all quantum numbers Ug,

which describe a definite state of the system. These are just the

numbers introduced in (4), with or without the restriction (5)

according to the type of particle. Introducing the abbreviation

2, = ‘

(8)

one has

z = 2 2?^ Z?* ... = 2 Zj* 2 22 * - = IT 2 (9)
til tla 8 Tig

ff>

The sum is easily evaluated for the two cases (6),

(B.E.) 2 2?' = l+2g+zf+2®+... = -i—

,

8 ^—^8

(F.D.) 22?*= 1+2,.
8

One can conveniently combine the results into one expression

z = n(i=F».)«, (10)

where the upper sign refers throughout to the B.E. ‘case.

This formula contains the theory of radiation, where the

condition (5) does not apply. But it is more convenient to deal

with the instance where (5) holds and to relax this condition in

the final result.

A glance at the original form (9) of Z shows that the condition

(5) indicates the selection from (10) of those terms which are

homogeneous of order n in all the Zg.

This can be done by the method of complex integration. We
form the generating function

/(o = n(i=FCz«p (11)
8

and expand it in powers of The coeflScient of is obviously

equal to the product (9) with the restriction (5). Hence we obtain

instead of (10) , «

Z = (12)

where the path of integration surrounds the origin in such a way
that no other singularity is included except C = 0.

For large n this integral can be evaluated by the method of

steepest descent. It is easy to see that the integrand has one and

only one minimum on the real positive axis.
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As in previous cases (see Appendix, 14, 15 ) the crudest

approximation suffices. One writes the integrand in the form

where _ -(?i+l)log i+logfU),

and determines the minimum of the function g(^) from

ff'a) = = 0; (13)

then one has to calculate g(C) and

^"(0 = ^+^iog/(0,

for the value of ^ which is the root of (13). To a first approxi-

mation one finds

logZ =
^(27rg'’(0y

(n+

1

)log ^+log/(0— i log{27rg "(C)}.

Neglecting 1 compared with n and the last term (which can

be seen to be of a smaller order), one obtains

logZ = —»log^-flog/(0; (U)

here C is the root of (13), where also n-f 1 can be replaced by n.

Now one gets from (11)

log/(0 = 2 Tlog(l=FCz*),
8

.
dlog/(5) _ V

Hence, from (8) and (13),

T L_
^e“+^**=Fl

= n
a = —log

J3
= 1/lkT.

(16)

From this equation a (or Q can be determined as function of

the particle number and of temperature. One easily sees now
that the case where the number of particles n is not given is

obtained by just omitting the equation (16) and putting a = 0

or 5 = 1. Yet the equation (16) is not entirely meaningless now,

it gives the changing number of particles actually present.
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The mean number of particles of the kind s is obviously

2
n. = ni,wa.,

2 c-^-®

hence, from (14) and (16),

_ 1 8Z _ IdlogZ^

Zd^e

'^8 = O » (
17

)

which confirms (16) with (5). This formula, for thg B.E. case

(minus sign), has been mentioned in VIII (8.20), where it was
obtained by a completely different consideration of Einstein’s.

In the same way, the average energy of the system is found to

be dlogZ ^ V
dp ^e“+^*«=Fl

= 'I,ngeg = E,
8

(18)

in agreement with (4).

These are the fundamental formulae ofquantum gases, derived

from the general kinetic theory. They are to be found in A, Ph,

Ch. VII, p. 197; in particular the fundamental formula (17) in

§ 6, p. 224, for B.E., and in § 6, p. 228, for F.D. All further

developments may be read there (or in any other of the

many books dealing with the subject). I wish to conclude this

presentation by giving the explicit formulae for monatomic
gases, where the energy is € = p^l2m and the summation over

cells is to be replaced by an integration over the momentum
space. The weight of a cell is found, by a simple quantum-
mechanical consideration, for a single particle without spin

{A. Ph. Ch. VII, § 4, p. 215) to be

O) dxdydzdp^ dpy dp^.

Hence, introducing the integration variable

aJ 2m

one obtains from (17) and (18)

477F

AS

^{2mkT) ’

n {2mkTfi^
J ^

dx
;+x>ipi'

U = ^{2mkTf>- f
A*

(19)

(
20

)
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which are the quantum generalizations of the formulae given in

Appendix 14 and reduce to them for a -xx). A detailed discus-

sion would be outside the plan of this book. It need only be

said that the F.D. statistics ofelectrons have been fully confirmed

by the study •of the properties of metals {A. Ph, Ch. VII. 7,

p. 229; 8, p. 232; 9, p. 235; 10, p. 236; A. XXX, p. 352).

33. (IX. p. 116.) Quantum equations of motion

At the end of Chapter VI, which deals with the kinetic theory

of (dense) matter from the classical standpoint, the statistical

derivation of the phenomenological hydro-thermal equations

was mentioned and reference made to this later Appendix, which

belongs to quantum theory. This was done to save space; for

the classical derivation is essentially the same as that based on

quantum theory, and one easily obtains it from the latter by a

few simple rules.

The first of these rules is, of course, the correspondence of the

normalized commutator [oc,B] =:-:~(a6— i8a) with the Poisson
• iTl

bracket

hiS]
/ doc 0j3 doc dp \

\8x(« 0p(i) ( 1 )

if and are the position and momentum vectors on which

(X and depend.

The second rule concerns the operator which in the text is

described in words; expressed in mathematical symbols it is

^3*** JJ
^X<3>dx(3>'8(x<3>— X<3>').... (2)

It has to be interpreted classically to mean

X,... = JJ (3)

Thus the classical operation
J

corresponds to

i.e. to substituting for as stated in the text.

In using the correspondence principle to proceed from classical

to quantum mechanics a product ayS may not be left unchanged

unless a and j8 commute; in general one must replace ocjS by
{<xp} = ^{(Xp+poc),

By applying these rules one can easily go over from quantum
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to classical formulae (and in many cases also vice versa). There-

fore we give here only the quantum treatment.

To derive the equation (9.48) from (9.46) with the help of

(9.47), one proceeds by steps of which only the first need be

given, as the following ones are precisely similar; One has:

Hence, applying the operation xn (^*46), one ol^tains, using

XnPn ^ Pn-v

^Pn-
dt

i Pn] PnI

(
5

)

The middle term on the right-hand side is

and vanishes on transformation to a surface integral, because

there is no flow across the boundary at a large distance. Hence

(5) reduces to the equation (9.48) with g = iV^— 1, which com-

pletes the first step. The following steps are of the same pattern.

In order to make the transition from the ‘microscopic’ equa-

tions of motion (9.48) of the molecular clusters to the macro-

scopic equations of hydrodynamics, one needs first to define the

density and macroscopic velocity in terms of the molecular

quantities. The generalized ‘density’ which reduces to the

ordinary number density Uiforq = 1, is obtained as a function

of the positions x^^^,..., by writing = x^^^ (i = 1, 2,...,g)

in the density matrix pg(x, x'). The macroscopic velocity

for a molecule (i) in the cluster ofq molecules whose positions are

given is the average value of the quantity represented by the

operator m
=

mn,
(
6)

where the bracket {...} indicates the symmetrized product, as

introduced above, and the subscript x' = x the diagonal

elements of the matrix.
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By expressing (9.48) in the coordinate representation and

writing one obtains the equation of continuity

dt
= - (7 )

Since

2m

1 e

’gT-PaJ

and

= [{a)(|X<«-X«)|)-<P(|X«)'_x«)'|)}p(X,X')L=x = 0.

Next, multiply (9.48) by the operator before and after, taking

half the sum, and then write == x^^*^ (j = 1, 2,...,^').

* d
The left4iand side evidently reduces to m— One has

cz

further

2m

and
8<I)(«)

'9-^’

{P<«,Xa+i[^'^+«.Pa.x]}x-x= -
J

Hence, if a tehsor is defined by

'«+! gx«)

one has

»|ku<»)+ ^
.

[i{P»(P%)}....+l»»]= 0. (8)

By using (7) one obtains

d . Ml. Sul*> ^ «'
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^ Q 0
or, if dldt is the convective derivative — + T Uo —ttm'

i-i

Hence (8) may be written in the form

(9)

(10)

where
pdi) _

lYh
(11)

= m{v«>(v<%)}3,._x;

here v<« = i p«)_uWp 8(x<«-x(«') (12)

is the relative molecular velocity referred to the visible motion.

The equation (10) is the generalized equation of motion of the

cluster of q molecules, which reduces to the ordinary equation of

hydrodynamics when g = 1.

the generalized pressure tensor, is seen to consist of two
parts and associated wdth the kinetic energy of motion
and the potential energy between the molecules respectively.

The diagonal element of the tensor is a multiple of the

kinetic temperature defined by

iH (13)

The equation of energy transfer can be obtained in*the same way
as the equation of motion by calculating the rate of change with

time of

34. (IX. p. 118.) Supraconductivity

There exists a satisfactory phenomenological theory of supra-

conductivity, mainly due to F. London; it is excellently pre-

sented in a book by M. von Laue, where the literature can be

found. {Theorie der Supraleitung: Springer, Berlin u. Gottingen,

1947).

Many attempts to formulate an electronic theory have

been made, without much success. Recently W. Heisenberg
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has published some papers (Z. /. Naturforschungy 2 a, p. 185,

1947) which claim to explain the essential features of the pheno-

menon. According to this theory every metal ought to be supra-

conductive for sufficiently low temperatures. Actually the alkaH

metals which have one ‘free’ electron are not supraconductive

even at the lowest temperatures at present obtainable, and it is

not very likely that a further decrease oftemperature will change

this. There are also theoretical objections against Heisenberg’s

method. ^

A different theory has been developed by my collaborator

Mr. Kai Chia Cheng and myself, which connects supracon-

ductivity with certain properties of the crystal lattice and pre-

dicts correlations between structure and supraconductive state,

which are confirmed by the facts (e.g. the behaviour of the alkali

metals). The complete theory will be worked out in due course.

35. (X. p. 124.) Economy of thinking

The ideal of simplicity has found a materialistic expression in

Ernst Mach’s principle of economy in thought (Prinzip der

Denk‘0konomie). He maintains that the purpose of theory in

science is to economize our mental efforts. This formulation,

often repeated by other authors, seems to me very objectionable.

If we want to economize thinking the best way would be to stop

thinking at all. A minimum principle like this has, as is well

known to mathematicians, a meaning only if a constraining

condition is added. We must first agree that we are confronted

with the task not only of bringing some order into a vast expanse

ofaccumulated experience but also ofperpetually extending this

experience by*research; then we shall readily consent that we
would be lost without the utmost efficiency and clarity in think-

ing. To replace these words by the expression ‘economy of

thinking’ may have an appeal to engineers and others interested

in practical apphcations, but hardly to those who enjoy thinking

for no other purpose than to clarify a problem.

36. (X. p. 127.) Concluding remarks

I feel that any critical reference to philosophical literature

ought to be based on quotations. Yet, as I have said before, my
reading of philosophical books is sporadic and unsystematic,

and what I say here is a mere general impression. A book which
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I have recently read with some care is E. Cassirer’s Determinia-

mus und Indeterminismua in der modemen Phyaik (Gdteborg,

Elanders, 1937), which gives an excellent account of the situa-

tion, not only in physics itself but also with regard to possible

applications of the new physical ideas to other fields. There one

findsreferences toand quotations from all greatthinkerswho have
written about the problem. The last section contains-Cassirer’s

opinion on the ethical consequences of physical indeterminism

which is essentially the same as that expressed by myself. I

quote his words (translated from p. 259): ‘From the significance

of freedom, as a mere possibility hmited by natural laws,

there is no way to that “reality” of volition and freedom of

decision with which ethics is concerned. To mistake the choice

(Auawahl) which an electron, according to Bohr’s theory has

between different quantum orbits, with a choice {Wahl) in

the ethical sense of this concept, would mean to become the

victim of a purely Hnguistic equivocality. To speak of an ethical

choice there must not only be different possibihties but a con-

scious distinction between them and a conscious decision

about them. To attribute such acts to an electron would be a

gross relapse into a form of anthropomorphism ’ Concerning

the inverse problem whether the ‘freedom’ of the electron helps

us to understand the freedom of volition he says this (p. 261):

‘It is of no avail whether causahty in nature is regarded in

the form of rigorous “djmamical” laws or of merely statistical

laws. ... In neither way does there remain open an access to

that sphere of “freedom” which is claimed by ethics’.

My short survey of these difficult problems cannot be com-
pared with Cassirer’s deep and thorough studyi. Yet it is a

satisfaction to me that he also sees the philosophical importance

of quantum theory not so much in the question ofindeterminism

but in the possibility of several complementary perspectives or

aspects in the description of the same phenomena as soon as

different standpoints of meaning are taken. There is no unique

image of our whole world of experience.

This last Appendix, added after delivering the lectures, gives

me the opportunity to express my thanks to those among my
audience who came to me to discuss problems and to raise

objections. One of these was directed against my expression
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‘observational invariants’; it was said that the conception of

invariant presupposes the existence ofa group oftransformations

which is lacking in this case. I do not think that this is right.

The problem is, of course, a psychological one; what I call

‘observationakinvariants’ corresponds roughly to the Gestalten

of the psychologists. The essence of Gestalten theory is that the

primary pT^rceptions consist not in uncoordinated sense im-

pressions but in total shapes or configurations which preserve

their identity independently of their own movements and the

changing standpoint of the observer. Now compare this with

a mathematical example, say the definition of the group of

rotations as those linear transformations of the coordinates

x,y,z for which is invariant. The latter condition

can be interpreted geometrically as postulating the invariance

of the shape of spheres. Hence the group is defined by assuming

the existence of a definite invariant configuration or Gestalt, not

the other way round. The situation in psychology seems to me
quite analogous, tl;iough much less precise. Yet I think that this

analogy is of some help in understanding what we mean by real

things in the flow of perceptions.

Another objection was raised against my use of the expression

‘metaphysical’ because of its association with speculative sys-

tems of philosophy. I need hardly say that I do not Hke this kind

of metaphysics, which pretends that there is a definite goal to be

reached and often claims to have reached it. I am convinced

that we are on a never-ending way; on a good and enjoyable way,

but far from any goal. Metaphysical systematization means
formalization and petrification. Yet there are metaphysical

problems, ‘which cannot be disposed of by declaring them
meaningless, or by calling them with other names, like epistemo-

logy. For, as I have repeatedly said, they are ‘beyond physics’

indeed and demand an act of faith. We have to accept this fact

to be honest. There are two objectionable types of believers:

those who believe the incredible and those who believe that

‘belief’ must be discarded and replaced by ‘the scientific method’

.

Between these two extremes on the right and the left there is

enough scope for believing the reasonable and reasoning on
soimd beliefs. Faith, imagination, and intuition are decisive

factors in the progress of science as in any other human activity.

S131 p
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